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ABSTRACT

We propose a class of novel energy-efficient multi-cost routing algorithms for wireless mesh networks, and evaluate their
performance. In multi-cost routing, a vector of cost parameters is assigned to each network link, from which the cost vectors of
candidate paths are calculated using appropriate operators. In the end these parameters are combined in various optimization
functions, corresponding to different routing algorithms, for selecting the optimal path. We evaluate the performance of
the proposed energy-aware multi-cost routing algorithms under two models. In the network evacuation model, the network
starts with a number of packets that have to be transmitted and an amount of energy per node, and the objective is to serve the
packets in the smallest number of steps, or serve as many packets as possible before the energy is depleted. In the dynamic
one-to-one communication model, new data packets are generated continuously and nodes are capable of recharging their
energy periodically, over an infinite time horizon, and we are interested in the maximum achievable steady-state throughput,
the packet delay, and the energy consumption. Our results show that energy-aware multi-cost routing increases the lifetime
of the network and achieves better overall network performance than other approaches. Copyright © 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

A node in a wireless mesh network consumes energy when
transmitting, receiving or processing data, or when simply
listening to the channel. Since wireless nodes are usually
battery-operated, energy is a scarce resource limiting the
performance and lifetime of the network, in addition to the
interference and capacity constraints. In this work we study
multi-cost routing strategies for wireless mesh networks
that take into account energy-related parameters, such as
the node residual energies, the node transmission powers,
and the hop count. We focus on wireless mesh networks
consisting of static nodes with finite energy reserves, even
though our routing algorithms can also be extended to the
case of ad hoc networks, using appropriate techniques to
address mobility [1,2]. Energy charging is not always guar-
anteed in wireless mesh networks, either by design or due
to other reasons.

We can distinguish between two routing approaches in
wireless networks: in particular, the single-cost and the

multi-cost routing approach. Most routing protocols pro-
posed till date are based on the single-cost idea, where
a single metric is used to represent the cost of using a
link. This link metric can be a function of several network
parameters (including load, energy and interference related
parameters), but it is still a scalar. Routing algorithms of
this kind calculate the path that has the minimum cost
for each source--destination pair. Single-cost routing algo-
rithms cannot optimize performance with respect to general
cost functions, and they do not easily support Quality of Ser-
vice (QoS) differentiation. Also, they usually yield only one
path per source--destination pair, leading to non-uniform
traffic distribution and possible instability problems [3].

In the multi-cost routing approach proposed in the cur-
rent work, each link† is assigned a cost vector consisting

† The term ‘link’ is used to refer to a single-hop connection between
neighboring nodes, while the term ‘path’ is used to refer to multi-hop
connections between two nodes in the network.
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of several cost parameters. Specifically, in our formula-
tion for wireless networks, the cost parameters of a link
l = (i, j) include the hop count, the energy expended by the
transmitting node i, and its residual energy. Other parame-
ters of interest, such as the residual energy of the receiving
node j, a measure of the interference caused to other nodes
and links, the available link capacity, and others, can also
be included in our formulation in a straightforward man-
ner. A cost vector can then be defined for a path [3] by
combining component-wise the cost vectors of its links
according to some associative operator. The class of multi-
cost routing algorithms that we propose consist of two
phases: they first compute a set of candidate non-dominated
paths for a given source--destination pair, and then they
select the path that minimizes a desired optimization func-
tion. We will say that a path p1 dominates another path
p2 that corresponds to the same source--destination pair if
p1 is better than p2 with respect to all the cost parame-
ters. Also, the function to be optimized is chosen based
on the interests of the network, but it may also depend
on the user QoS requirements or on the amount of data
that has to be transferred. We should note that apply-
ing similar optimization functions using the single-cost
approach would either be impossible (for nonlinear metrics)
or would require (for linear metrics) the re-running of a min-
imum cost algorithm, using each time a corresponding link
metric.

In this paper, we propose several multi-cost routing algo-
rithms, each corresponding to a different choice for the
optimization function used. The proposed algorithms are
based on the multi-cost routing approach, according to
which the set of candidate paths for each source--destination
pair is first formed. The selection of the optimal path is then
made based on the optimization function in use, thus result-
ing in a distinct routing strategy for each one of the proposed
optimization functions. Different cost parameters, domina-
tion relations, and optimization functions represent distinct
sets of routing decisions (routing algorithms). To the best
of our knowledge, there are very few works (if any) that use
multi-cost routing in wireless networks, while even in the
wired networks literature, the majority of relevant works
use multi-constrained routing.

Multi-cost routing can be considered as a generalization
of multi-constrained routing considered in earlier works
mainly in the context of wired networks. In the multi-
constrained routing problem, a constraint is specified for
each of the cost parameters of a path and the target is to
find paths that satisfy all the constraints. In the multi-cost
routing problem there are no hard constraints and the tar-
get is to find paths that are better than all other paths for
all or some of the cost parameters, and select the one that
is optimal with respect to the optimization function used.
Multi-cost routing is, therefore, a generalization of multi-
constrained routing, in the sense that the latter case can be
obtained from the former case, by choosing the function
to be optimized so as to have infinite cost at the constraint
points.

We evaluate the proposed algorithms’ performance for
wireless mesh networks under two quite different mod-
els: the network evacuation and the dynamic one-to-one
communication model. These models signify two distinct
ways of network traffic generation. The network evacua-
tion model is a model first proposed in the current paper
and has not been used elsewhere, at least for mobile net-
works. The dynamic one-to-one model (or variations of it)
has been used by several other authors in previous works for
evaluating the performance of their proposed algorithms.
In the network evacuation problem, where nodes do not
have energy recharging capabilities, the network starts with
a certain number of packets that have to be routed and a
certain amount of energy per node, and the objective is to
serve the packets in the smallest number of steps, or to
serve as many packets as possible before the energy at the
nodes is depleted. We find that by using appropriate energy-
aware cost functions, energy consumption can be spread
more evenly among the nodes, leading to longer lifetime
for the network. Even though energy-aware routing may
sometimes give longer paths than the minimum required, it
is observed that in the long run, when nodes start running
out of energy, it gives better overall performance results.

In the dynamic one-to-one communication problem (see
Figure 1) packets with uniformly distributed destinations
are generated at each network node according to a random
process, and energy is also recharged at each node at a given
rate, over an infinite time horizon. We examine theoreti-
cally the relative effects energy and capacity/interference
constraints have on the performance of two-dimensional
wireless mesh networks and calculate upper bounds on
the maximum achievable throughput under these con-
straints. The results obtained show that the proposed
multi-cost energy-aware algorithms outperform other algo-
rithms, achieving larger maximum throughput pmax for all
recharging rates tested, and smaller average packet delay
for a given packet generation probability p < pmax. We also
find that the average delay increases more abruptly when
the traffic load reaches its maximum limitation due to the
energy constraint, while it increases more smoothly when
the traffic reaches its maximum limitation due to the capac-
ity/interference constraint.

The remainder of the paper is organized as follows. In
Section 2 we report on previous work. In Section 3 we
present multi-cost routing for a general network, while Sec-
tion 4 describes cost parameters and optimization functions
that are specific to wireless mesh networks. In Section 5
we evaluate the performance of the proposed routing algo-
rithms under the network evacuation model. Beginning with
Section 6, we turn our attention to the dynamic one-to-
one communication model, and present upper bounds on
the maximum achievable throughput of two-dimensional
networks under capacity and energy limitations. In Sec-
tion 7 we present simulation results on the performance
of multi-cost routing under the dynamic one-to-one
communication model. Finally, Section 8 concludes the
paper.
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Fig. 1. The dynamic one-to-one communication model (infinite-time horizon problem). Packets with uniformly distributed destinations
are generated at each node of the network with probability p during a slot. Energy is also generated at each node at a rate of X units
of energy per slot. For a given network and energy generation rate X, we are interested in the maximum generation probability p for

which the network is stable, and in the average packet delay for any load in the stability region.

2. PREVIOUS WORK

In general, mesh networks can be seen as a special case
of ad hoc network, where nodes are usually static. A great
deal of work on wireless ad hoc networks has focused on the
design of efficient routing protocols. Energy-efficiency has
been considered from the perspective of either minimizing
the total energy consumption or maximizing the network
lifetime [4]. Regardless of the methodology used, most
energy-efficient protocols search for a path that minimizes
an energy-related cost metric.

Towards the direction of maximizing network lifetime,
Reference [5] proposes a protocol where the link costs are
defined based on the initial and the current energy at the
transmitting nodes, while Reference [6] presents an algo-
rithm that excludes the energy starving nodes from route
selection. In Reference [7], a cost metric is used for routing,
which is a function of the remaining battery level and the
number of neighbors of a node. Other works have focused on
the discovery of energy efficient routes under the constraint
of a fixed end-to-end bit error rate [8], or by considering
the expected number of retransmissions for reliable packet
delivery [9]. In Reference [10], the LEAR protocol is pre-
sented where a node decides to forward or not traffic based
on its residual energy.

A protocol that minimizes the network energy con-
sumption is presented in Reference [11], where the link
costs are defined based on the energy expenditure for
unit flow transmission. Reference [12] proposes two rout-
ing algorithms that adjust the node transmission power in
order to reduce the energy expenditure. In another work
[13], a distributed algorithm is presented that incorpo-
rates power control in the routing of packets, and tries to
increase energy consumption at nodes with plenty of energy
while reducing consumption at nodes with small energy
reserves. Span [14] is a distributed, randomized algorithm

where nodes make local decisions on whether to sleep,
thus reducing energy consumption, or to join a backbone
infrastructure.

Another series of works studies wireless mesh networks
whose nodes are equipped with a solar panel enabling their
recharging [15--18]. In References [19] and [20], the authors
define the problem of determining and assigning to each
node the right size of solar panel and battery. In Reference
[21], a queuing analytical model is presented to investigate
the performances of different sleep and wakeup strategies
in a solar-powered wireless mesh network, while network
models that assume energy recharging capabilities were
considered in Reference [22]. In the present work we study
the impact that the node recharging capability has on the
performance limitations of the proposed multicost routing
strategies.

The routing protocols mentioned above follow the single-
cost approach, in the sense that they base their decisions
on a single, scalar metric (which maybe a function of sev-
eral metrics). Multi-constrained routing algorithms have
also been investigated, especially for wired networks
[23--26]. Finding paths subject to two or more cost param-
eters/constraints is in most cases an NP-complete problem
[27,28]. As a result, most algorithms proposed in this area
concentrate on solving the Multi-Constrained Path (MCP)
problem or the Multi-Constrained Optimal Path (MCOP)
problem in a heuristic and approximate way with poly-
nomial and pseudo-polynomial-time complexities, paying
little attention to the parameters/costs used and their effects
on network performance. The multi-constrained problem
has been less studied in the context of wireless ad hoc
networks, even though these networks have important reli-
ability, energy, and capacity constraints that are not present
in wired networks. In Reference [29], the authors propose
a probabilistic modeling of the link state for wireless net-
works, and propose an approximation of a local multipath
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routing algorithm to provide soft-QoS under delay and reli-
ability constraints. In Reference [30], a multi-constrained
QoS routing algorithm for mobile ad hoc networks is pro-
posed that uses simulated annealing. In Reference [31], the
authors present an algorithm based on depth-first-search
that solves the general k-constrained MCP problem with
pseudo-polynomial time complexity. In References [32]
and [33], well-known routing algorithms for ad hoc net-
works are extended to support QoS through the usage of
multiple constraints. These algorithms focus on the band-
width and delay constrained routing problem. In Reference
[34], a QoS routing scheme for ad hoc networks that uses
flooding is proposed.

The present work differs from earlier works by using
multi-cost routing, which is a generalization of both single-
cost and multi-constrained routing, to perform efficient
energy-aware routing in mesh networks. The proposed algo-
rithms are evaluated under both a static traffic scenario
without energy recharging and a dynamic traffic scenario
with energy recharging. Performance bounds on the max-
imum achievable throughput of wireless networks with
recharging are also obtained.

3. MULTI-COST ROUTING

In multi-cost routing [35], each link of the network is
assigned a cost vector consisting of several cost parameters.
The cost vector of a path is obtained from the cost vectors
of the links that comprise it by applying, component-wise,
a monotonic associative operator to each cost vector
parameter. The parameters that may be included in the path
cost vector are categorized by the way they are obtained
from the link cost vectors, that is, by the associative
operator used for each cost vector component, and by the
criterion applied to them (maximization or minimization)
to select the optimal path. To be more specific, we
denote by Vl = (v1l, v2l, . . ., vkl), where k is the number
of cost parameters, the link cost vector of link l, by
V (P) = (V1, V2, . . ., Vk) the cost vector of the path P that
consists of links l = 1, 2, . . ., L, and by f (V (P)) the opti-
mization function that has to be minimized in order to select
the optimal path. The cost vector V (P) = (V1, V2, . . ., Vk)
of a path P consisting of links l = 1, 2, . . ., L, is then
obtained from the cost vectors of the links that comprise
it by applying component-wise a monotonic associative
operator � to each cost vector parameter:

Vm = �L
l=1vml

The associative operator may be different for different
cost vector components. For example, the mth parameter of
the cost vector may be of one of the following types:

• additive cumulative, where

Vm =
L∑

l=1

vml, vml ≥ 0

and f is monotonically increasing in Vm (so our objec-
tive is to minimize Vm),

• restrictive, where

Vm = minl=1,...,L{vml}

and f is monotonically decreasing in Vm (so our objec-
tive is to maximize Vm), and

• maximum representative, where

Vm = maxl=1,...,L{vml}

and f is monotonically increasing in Vm (so our objective is
to minimize Vm).

Additive cumulative parameters include several impor-
tant cost measures used in practice. For example, if vml is
the delay on link l, then Vm represents the delay of the
path, which in most practical situations has to be mini-
mized. If vml = 1 for all links l, then Vm corresponds to
the number of hops on the path. Since paths that use a small
number of links are more economical in terms of resource
utilization, it is natural to assume that the cost function f
is an increasing function of Vm. If vml is the energy con-
sumed on link l of a wireless network, then Vm represents
the energy consumed for transmitting a packet on the path,
which has to be minimized. Another interesting case arises
when vml∈[0, 1] represents the probability that link l is oper-
ational, and Vm = ∏L

l=1 vml is the probability that all links
on a path are operational (assuming links fail independently
of each other). For the routing algorithm to favor reliable
paths, the cost function f should be a decreasing function
in Vm. This problem can be reduced to a problem involving
cumulative additive components by defining new cost com-
ponents v′

m1 = −lnvm1, . . ., v
′
ml = −lnvml, where v′

ml ≥ 0.
Then maximizing the reliability Vm of a path is equivalent
to minimizing V ′

m = ∑L

l=1 v′
ml.

Restrictive cost parameters appear in routing problems
when capacities or transmission rates are considered. In
particular, if vml is the available capacity on link l, then Vm =
minl=1,...,L{vml} represents the capacity of a path, defined
as the minimum of the capacities available on the links of
the path. For the routing algorithm to favor less congested
paths, the cost function f should be a decreasing function of
Vm. Another interesting case arises when vml represents the
remaining energy at the transmitting node of link l, in which
case Vm represents the minimum energy available over all
nodes of a path, which in most practical cases we want to
maximize.

An example of a maximum representative parameter is
the case where vml is the energy consumed for transmit-
ting a packet on link l, in which case Vm = maxl=1,...,L{vml}
represents the most energy-expensive transmission on the
path. Another example is the case where vml is the Bit Error
Rate (BER) on link l, in which case Vm = maxl=1,...,L{vml}
represents the link with the highest BER on the path, which
is often a good approximation of (or at least of the same
order of magnitude with) the path BER.
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It is important to note that the path that optimizes
f (V1, V2, . . ., Vk) is generally different than the path that
optimizes

∑L

l=1 f (v1l, v2l, . . ., vkl), indicating that multi-
cost routing is a generalization of single-cost (shortest path)
routing. Also, in contrast to single-cost routing, multi-cost
routing is not always compatible with distributed routing,
since for some choices of the cost function f the optimal
paths do not have the inclusion property that shortest paths
have; subpaths of shortest paths are also shortest paths,
while this is not generally the case with optimal paths found
by multicost routing for specific choices of the optimization
function. These show that multi-cost routing is very differ-
ent from single-cost routing both in terms of the decision it
takes, its properties, and the way it is implemented.

A multi-cost routing algorithm consists of two phases.
In the first phase, an enumeration of an appropriate set
of candidate paths for a given source--destination pair is
performed. This can be viewed as a generalization of Dijk-
stra’s algorithm. The basic difference of this algorithm with
Dijkstra’s algorithm is that a set of paths between a source
node and a destination node is obtained, instead of a single
path. Also, a destination node for which a path has already
been found may have to be considered again later. The set
of candidate paths that a multi-cost routing algorithm pro-
duces at the end of the first phase, consists of the so called
non-dominated paths. These are paths for which it is impos-
sible to find other paths that are better with respect to one
cost parameter (of their cost vectors) without being worse
with respect to some other cost parameter. This reduces to a
large extent the algorithm’s computational effort, since the
optimization function does not need to be applied to every
possible path between a certain source--destination pair. An
example of the enumeration of the non-dominated paths is
given in Figure 2, where an additive cumulative parameter
h and a restrictive parameter R are assumed. In the second
phase, the optimal path is chosen from this set according to
the optimization function f(V) used.

A formal description of the multi-cost routing algorithm
is presented next. The algorithm obtains for a given source

S, destination E pair the optimal path. Without loss of
generality, let the cost vector of each link have k cost
parameters, the first s of which are additive and have to
be minimized and the rest k−s are restrictive and have to
be maximized. We assume that each path is represented by
a label that includes the cost vector associated with it and
the first hop to the source using that path. The source that
serves the connection is taken to be node S. We let Wi be
the set of labels of the paths from node S to a node ni, and
W∪ni �=SWi be the set of all labels. Initially, every node has
a single label corresponding to the link (if any) that con-
nects it directly to the origin node. In each subsequent step,
the algorithm marks labels (equivalently paths) from the
set W as final. We let Wf ⊆ W be the subset of all final
labels for all the nodes, and W

f

i ⊆ Wi be the set of final
labels for node ni. We also let T be the set of nodes with at
least one final label. The algorithm can now be described as
follows:

3.1. Phase 1---enumeration of a set of
non-dominated paths

Step 0---Initialization: W = {
Vp1 , Vp2 , · · · , VpN

}
, Wf =

{}, T = {}, where Vpi
is the label of the path pi (if any)

leading directly from node S to node ni.

Step 1---Choosing the optimum label: The label of path
p whose cost vector minimizes the additive component is
chosen. In case of a tie, we look at the second component,
which is the binary capacity availability vector, and a dom-
inant one is chosen. If Vpi

is the cost vector of the chosen
label and ni is the node to which it leads, then the following
updates are performed:

W
f

i = W
f

i ∪{Vpi
}, Wf = Wf ∪{Vpi

}, T = T∪ni. (1)

Step 2---Obtaining the new labels: The neighbors of node
ni, which may or may not belong to the set T, are now
considered and are given new labels (except for the origin
node and the node specified as the previous node in the

Fig. 2. Enumeration of the set of non-dominated paths, for the case of two cost parameters. Each dot represents the cost vector of
a path. The parameters of this vector are an additive cumulative parameter h (representing, for example, the number of hops or the
delay of the path) and a restrictive parameter R (representing, for example, the minimum residual energy on the nodes of the path
or the available capacity on the path). (a) The set of all paths. (b) Obtaining the non-dominated paths. (c) The set of non-dominated

paths; paths that have both larger R and smaller h than some of the other path that have been discarded.
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label). The new label for the path pj leading to the neighbor
nj of node ni by extending the path pi through the link l =
(ni, nj) is then computed as follows. The new cost vector
is updated according to V ′

pj
= Vpi

� Vl, where Vl is the
label of link l = (ni, nj), and � represents the monotonic
associative operator described earlier.

Step 3---Discarding dominated paths: Each neighbor con-
sidered in step 2 compares its new label with its previous
labels using the domination relation.

Let nj be one of the neighbors of node ni, V ′
pj

the new
label obtained from step 2 and Wj be the set of labels for
this node.

The new label has to be compared with the labels Vpj
∈Wj

(both final and non-final). If any cost vector in Wj dominates
V ′

pj
, then V ′

pj
is discarded and Wj and W does not change.

If the new cost vector V ′
pj

is not dominated by any of the
vectors in Wj then V ′

pj
is added to the set Wj and W so

that Wj = Wj∪{V ′
pj

} and W = W∪{V ′
pj

}. If the new vector
dominates one of the vectors in Wj then Wj and W are
updated by eliminating the dominated vectors and adding
the new vector V ′

pj
. Note that it is not possible for the new

vector to dominate an existing vector and be dominated by
another one at the same time.

Step 4---Termination: If after an iteration the set Wf is equal
W, the algorithm is completed. Otherwise (when there are
still some labels to be chosen), we go back to Step 1. The
set Pn−d of non-dominated paths from the given source S to
the given destination node E is the final set W

f

E .

3.2. Phase 2---selection of the optimal path

In the second phase, the optimal path is chosen from this set
according to the optimization function f(V) used. The final
cost of a path P is given by a function f (V (P)) of its cost
vector V(P), and the routing algorithm selects the path with
the minimum cost from the set of non-dominated paths.

In this work, we examine multi-cost routing in the con-
text of wireless networks. The broadcast nature of the
wireless medium is a major differentiating factor com-
pared to the wired field. Additionally, the cost parameters
and the optimization functions that combine them are tai-
lored for the needs of such networks. We note here that,
even in the wired networks literature, there are very few
works regarding multi-cost routing (there are some works
on multi-constrained routing, which is a related but different
concept).

4. COST PARAMETERS AND
OPTIMIZATION FUNCTIONS

The multi-cost algorithms we propose for energy aware
routing in wireless mesh networks use three link cost param-
eters: the hop count, equal to 1 for all links, the residual
energy Ri, and the transmission power Ti at the transmitting
node i of a link (i, j). The number of hops h of a path is
obtained by counting the links that belong to it, and is an

additive cost parameter. The minimum residual energy R of
a path represents the minimum residual energy left on the
nodes of the path, and is a restrictive cost parameter. Finally,
the transmitted power parameter T of a path is defined as
the sum of the transmission powers Ti of the path’s nodes
and is an additive cost parameter.

The proposed optimization functions f (h, T, R) are listed
below. Given that we focus on energy-efficiency, we com-
bine the aforementioned energy-related cost parameters in
several ways. Each optimization corresponds to a different
routing algorithm, since it produces a distinct set of routing
decisions.

• Minimum-Hop: f1(h, T, R) = h

• SUM/MIN Energy: f2(h, T, R) =
∑

i∈P
Ti

mini∈P Ri

• SUM/MIN Energy-Hop: f3(h, T, R) = h ·
∑

i∈P
Ti

mini∈P Ri

• SUM/MIN Energy-Half-Hop: f4(h, T, R) =
√

h ·
∑

i∈P
Ti

mini∈P Ri

In all cases, the algorithms first find the set of non-
dominated paths with cost parameters (h, T, R), and
therefore they have the same (or similar, if the parameters
are not the same) Phase 1, and then use the corresponding
optimization function f (h, T, R) in the Phase 2, to select the
optimal path. In other words the computation of the set of
non-dominated paths is common to all algorithms and the
selection of the optimal path is done at the end in a way that
is different for each of the algorithms proposed. The func-
tion to be optimized at the last step may depend on the QoS
requirements of the user. The optimization functions con-
sidered penalize paths that use a large number of hops, or
consume a large amount of energy, or pass through nodes
that have little energy left, differentiating, however, from
each other by giving different importance to each of these
factors.

The optimization functions presented, except for the first
one, cannot be optimized over all paths by using a single-
cost routing algorithm, which shows that multi-cost routing
is a strict generalization of single-cost routing. Finally,
based on Reference [27], the complexity of any algorithm
(optimization function) using at least two additive parame-
ters is exponential, except in the case where one of the two
is the hop metric. Also when one additive and one restric-
tive or maximum representative parameter are used, then
the complexity of the corresponding algorithm (optimiza-
tion function) is polynomial. As a result all the proposed
algorithms have polynomial complexity.

5. PERFORMANCE RESULTS
UNDER THE NETWORK
EVACUATION MODEL

We first evaluate the performance of the proposed energy-
aware multi-cost routing algorithms under the network
evacuation model. In this model, the network starts with
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a certain number of packets that have to be routed and a
certain amount of energy per node, and the objective is to
serve the packets in the smallest number of steps, or to serve
as many packets as possible before the energy at the nodes
is depleted. We implemented the proposed algorithms and
carried out corresponding experiments using the Network
Simulator [36]. The routing agent running on each node
calculates the set of non-dominated paths to all destinations
at periodic time intervals.

We assume that source routing is used, since, as discussed
earlier, for some choices of the optimization function multi-
cost routing is not amenable to distributed implementation
(the inclusion property may not hold). When a data packet is
generated at a node, the node applies the optimization func-
tion to the cost vectors of the corresponding non-dominated
paths to select the optimal path, and the packet is sent on
that path. If no route to the destination can be found, the
packet is discarded.

The wireless mesh network simulated consists of 49
stationary nodes placed along a 7 × 7 grid. The distance
between neighbouring grid points is set at 50 m. The topolo-
gies studied in the experiments are either a regular grid
topology (where the transmission range of the nodes is
fixed at 50 m) or a random topology (where the transmission
range varies from node to node, and is uniformly distributed
between 50--100 m in one set of experiments, and between
50--150 m in another set of experiments). The transmission
powers used for each of the transmission ranges consid-
ered in the simulations, namely 50, 100, and 150 m, are
0.0704694, 0.281838, and 0.634135 mW, respectively. The
topologies for the variable transmission range scenarios are
shown in Figure 3. For the case of randomly produced net-
work topologies each measured value represented in the

graphs corresponds to the average of a set of ten experi-
ments.

The initial energy of the nodes was taken to be either 100
or 2 J. The former case represents a scenario of essentially
unlimited energy reserves (‘infinite’ energy), while in the
latter case some nodes run out of energy during the exper-
iments (finite energy), depending on the amount of traffic
they end up serving. The number of packets per node that
have to be delivered to their destinations (‘evacuated’ from
the network) in our experiments, varies from 100 to 1000
(at steps of 100) packets per source node. All packets have
equal length that is taken to be 500 bytes. Packet destina-
tions are uniformly distributed over all remaining network
nodes and the packet generation rate at each node is equal
to 0.1 packets/s. The interval between non-dominated path
recalculations is equal to 1 s.

In the experiments conducted we measured the average
residual energy E remaining at the nodes at the end of each
experiment, the variance σ2 of the node residual energies,
the time when a node runs out of energy, referred to as
the node depletion time DT, the average number of hops
h on the paths taken by the packets, the received-to-sent
packets ratio RS and the number of collisions C between
data packets.

5.1. Energy related performance measures

Figure 4 illustrates the average residual energy in the net-
work at the end of an evacuation experiment, as a function of
the number of packets evacuated per node. The Minimum-
Hop algorithm results in a higher average residual energy
E at the end of the evacuation experiments than the other

Fig. 3. (a) Network topology where the transmission range of the nodes varies between 50 and 100 m and (b) network topology where
the transmission range of the nodes varies in the range 50--150 m (we omit the edges already shown in topology Figure 3a).
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Fig. 4. Illustrates the average residual energy at the end of
the evacuation experiment for the Minimum-Hop, SUM/MIN
Energy, and SUM/MIN Energy-Hop algorithms. The results were
obtained for the case of finite energy and the topology of

Figure 3a.

routing algorithms examined. However, the Minimum-Hop
algorithm also results in a less uniform energy consump-
tion in the network and in smaller energy depletion times
DT than the other algorithms, indicated by Figure 5a and
5b, respectively. As a result the Minimum-Hop algorithm
also achieves lower throughput and higher dropping ratio.
Note in Figure 4 that when more than 400 packets are gen-
erated per source node, then the average residual energy
stops decreasing for all algorithms examined. This happens
because many nodes run out of energy and consequently
the network becomes disconnected and no more packets
are served.

The Minimum-Hop algorithm uses the same path for the
entire duration of a session, or until the energy of a node
on the path is depleted. As a result, a relatively small subset
of nodes has more active participation, in the transmission
of packets, than other nodes. The SUM/MIN Energy and
SUM/MIN Energy-Hop algorithms, on the other hand, are
based on parameters (namely Ri) that change over time, and
the path selected may not remain the same for all the packets
of a session. In this way the traffic forwarding and the result-
ing energy consumption are spread more uniformly, over a
larger number of nodes, leading to smaller average resid-
ual energy E and smaller variance σ2 of the residual energy
than the Minimum-Hop algorithm. Regarding the time the
energy of the nodes is depleted, the SUM/MIN Energy-Hop
algorithm exhibits the best performance in all the experi-
ments, while the Minimum-Hop algorithm seems to result
in the worst DT. Note that with the SUM/MIN Energy and
SUM/MIN Energy-Hop algorithms, when nodes start run-
ning out of energy, this happens almost simultaneously for
all nodes. This is because these algorithms spread the energy
consumption uniformly in the network, so that when one
node is at the point of first running out of energy, most
other nodes are at the same energy-critical situation.

In most of the experiments conducted, we found that the
performance of the SUM/MIN Energy-Hop algorithm was
between that of the Minimum-Hop algorithm and that of

Fig. 5. Illustrates (a) the variance of the residual energy and (b)
the current number of nodes with depleted energy at the end
of the evacuation experiment for the Minimum-Hop, SUM/MIN
Energy, and SUM/MIN Energy-Hop algorithms. The results were
obtained for the case of finite energy and the topology of

Figure 3a.

the SUM/MIN Energy algorithm, and, actually, in most
cases it was closer to that of the Minimum-Hop algorithm.
The SUM/MIN Energy-Half-Hop algorithm was found to
behave very similarly to the SUM/MIN Energy algorithm
in all cases considered. It seems that the 0.5 exponent on the
number of hops in the former algorithms effectively elimi-
nates the impact of the hop term on the cost function. This is
the reason we chose not to present in great detail the results
on the SUM/MIN Energy-Half-Hop algorithm.

5.2. Network related performance
measures

Figure 6 shows the received-to-sent packets ratio RS for
various algorithms examined. When the initial energy of
the nodes is infinite, all the packets are delivered to their
destinations, but when the initial energy is finite, the fraction
of packets delivered to their destinations decreases after a
certain number of packets have been inserted in the network.
The reason is that nodes run out of energy, limiting the
ability of the network to route packets. We observed that
the SUM/MIN Energy-Hop SUM/MIN Energy algorithms
achieve the best RS ratio in almost all the experiments, since
with these algorithms the network nodes remain alive for
longer periods of time.
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Fig. 6. Illustrates the received-to-sent packets ratio for the
Minimum-Hop, SUM/MIN Energy, and SUM/MIN Energy-Hop
algorithms. The results were obtained for the case of finite

energy and the topology of Figure 3a.

Figure 7 shows the average number of hops of the path.
When the nodes energy is infinite or the number of pack-
ets exchanged is small, the SUM/MIN Energy algorithms
selects paths that are longer on average than the Minimum-
Hop paths. However, when the nodes have finite energy,
there are cases where SUM/MIN Energy algorithm achieves
similar average number of hops to that of the Minimum-Hop
paths. This is because some of the nodes run out of energy
and the Minimum-Hop algorithm, eventually, has to use
longer paths. The SUM/MIN Energy-Hop algorithms are
dominated by the hop parameter and give results that are
similar to those of the Minimum-Hop.

5.3. The overhead of information exchange

The operation of the multi-cost algorithm is based on the
knowledge of the cost parameters by the nodes, some of
which (e.g., the node residual energy) are time-varying.

In wireless mesh networks or in ad hoc networks, the
cost parameter updates can be achieved by a periodical
beacon-like protocol, according to which each node sends
its local information to its direct neighbors. Eventually
this information will reach all the nodes in the network.
An alternative approach would be to include the updates
on cost parameters used, in the control and data pack-
ets (piggybacking) exchanged among the nodes, and used
for making routing decisions. This is particularly true for
mobile ad hoc networks, where the network topology and
residue energy of individual nodes are all subject to change;
therefore, residual energy information can be piggybacked
in control packets that are exchanges anyway for updat-
ing topology and hop count information. Wireless mesh
networks, however, usually have minimum-mobility mesh
backbones, and hop counts are relatively static informa-
tion. Therefore, exchanging residual energy information
will require additional control packets. In any case, there
will be a difference between the values of the parameters
stored at each node and the actual values of the parame-

ters that is expected to grow with the network diameter.
When various cost parameters participate in the selection
of the optimal paths, a subset of which are time-varying,
it can be argued that this information staleness is not deci-
sive for the efficiency of multi-cost routing. This is indeed
supported by our simulation experiments to be described
shortly.

In our simulations, we implemented the information
exchange process through the periodic update of the val-
ues of the cost parameters stored at the network nodes. In
order to investigate the effect of the staleness of the param-
eter values, we studied the algorithm’s performance with
respect to the duration of the information update interval.
The algorithms examined in this set of simulations were the
SUM/MIN Energy and the SUM/MIN Energy-Hop algo-
rithms.

The experiments conducted, depicted in Figure 8, ver-
ify that the performance of the energy-aware algorithms
degrades as the update interval increases. Interestingly,
there is a certain threshold in the update interval under
which the performance of the energy-aware routing algo-
rithms is not seriously degraded. In the results of Figure
8 this threshold is observed to be between 5 and 10 s.

Fig. 7. Illustrates the average number of hops of the paths con-
structed by the Minimum-Hop, SUM/MIN Energy, and SUM/MIN
Energy-Hop algorithms. The results were obtained for the case
of (a) infinite (very large) and (b) finite energy and the topology

of Figure 3a.
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Fig. 8. Illustrates (a) the received to sent packets ratio for the
SUM/MIN Energy and SUM/MIN Energy-Hop algorithms and
(b) the current number of nodes with depleted energy for the
SUM/MIN algorithm. The results were obtained for the case of
finite energy and the topology of Figure 3a, assuming each node

sends 1000 packets to randomly chosen destinations.

However, in comparison to the Minimum-Hop algorithm,
multi-cost routing performs considerably better even for
update interval of 100 s. This observation illustrates that
multi-cost routing withstands a certain amount of staleness
in the information regarding the cost parameters. Therefore,
multi-cost routing can still produce significant improvement
in network performance even when a relatively lighweight
information collection mechanism is used, such as one
based on data and control packets piggybacking, which can-
not always guarantee up-to-date information to the network
nodes. This observation justifies that multi-cost routing is
a scalable approach for wireless mesh networks. Further-
more, the same conclusion was drawn in Reference [1],
where we studied the application of multi-cost routing in
mobile ad hoc networks by incorporating it in the standard
DSR algorithm. In that case the information update was
implemented by piggybacking the information of the cost
parameters in the data and control packets exchanged by
the nodes.

6. CAPACITY AND ENERGY
LIMITATIONS

Starting with this section, we turn our attention to the
dynamic one-to-one communication model. In the dynamic

one-to-one communication problem (see Figure 1) pack-
ets having uniformly distributed destinations are generated
at each network node according to a random process, and
energy is also added at each node at a given recharging rate,
over an infinite time horizon. In our study, we first present
upper bounds on the maximum achievable throughput of
two-dimensional networks under capacity and energy limi-
tations. In the next section we present simulation results on
the performance of multi-cost routing under the dynamic
one-to-one communication model.

The traffic load that can be inserted in a wireless mesh
network is restricted by capacity and interference limita-
tions, and by the energy recharging rate at the nodes. Several
works have examined the effect link capacities and interfer-
ence have on the maximum achievable throughput [37,38],
but little work has been done on the limitations on the
maximum throughput posed by energy considerations.

We assume that packets are generated at each node of an
N-node network with probability p during each time period
(slot), and each packet requires an average of h(p) trans-
missions to arrive at its destination. All transmissions have
a transmission range R and require energy E. In a network
of area A, the number of transmissions that can take place
simultaneously is upper bounded by A

kR2 , where k is a con-
stant between π and 4π that depends on the MAC protocol
used and the relative location of the nodes, as shown in Fig-
ure 9. The mean number of transmissions per slot is given
by the product N · p · a(p) · h(p), where h(p) is the average
number of hops of the paths, and a(p) is the ratio of the
total number of packet transmissions over the number of
successful transmissions required to get the packets to their
destinations over the paths chosen. For the network to be
stable the following inequality must hold

N · p · a(p) · h(p) ≤ A

kR2
.

The number of hops of the paths h(p) is roughly inversely
proportional to the transmission range R of the nodes,
and we have h(p) ≥ L

/
R, where L is the average physi-

cal source--destination distance (with the inequality being
closer to equality for dense networks and shortest distance
routing). Assuming we are in the stable region and there
is no buffer limitation, no packets are lost, and we have
a(p) ≥ 1. Consequently, a limit on the packet generation
rate p posed by the capacity/interference constraints is given
by

p ≤ A

kRNL
= 1

kρL
· 1

R
, (2)

where ρ = N
/
A is the area node density.

For a wireless mesh network with energy rechargeable
nodes to be stable, the mean energy expended at each time
slot must not exceed the energy inserted in the network in the
same period. The average energy expended during each slot
is equal to N · p · a(p) · h(p) · E, while the average energy
inserted in the network during a slot is equal to N · X, where
X is the energy recharging rate at each node per slot. Conse-
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quently, a necessary condition for the network to be stable is

N · p · a(p) · h(p) · E ≤ N · X.

Assuming we are in the stable region and there is no
buffer limitation, no packets are lost, and we have a(p) ≥ 1.
The energy expended E for a packet transmission can be
expressed as k′Rα, for some constant k′ (which depends on
the channel, the sensitivity of the receiver, and the desired
BER), where α is between 2 and 4 depending on the power-
loss model. Working as before (e.g., h(p) ≥ L

/
R) we find

that a necessary condition for stability due to the energy
constraint is

p ≤ X

k′L
· 1

Rα−1
. (3)

Inequalities 2 and 3 show that the dependence of the
energy limitation on the network nodes’ transmission range
R is stronger (since α > 2) than the dependence of the net-
work capacity/interference limitation on R. The stability
region shrinks as the transmission range R increases, show-
ing that a small transmission range is beneficial both for
capacity/interference-constrained and energy-constrained
wireless mesh networks. That is, the amount of traffic that
can be served by the network increases when we decrease
the transmission range of the nodes, both due to increas-
ing network capacity (better reuse factor) and due to lower
spending of the energy reserves. Since in most wireless envi-

Fig. 9. In the IEEE 802.11 protocol, widely used in wireless mesh
networks, a node wishing to transmit a packet at distance R,
first uses the RTS/CTS mechanism to reserve a transmission
floor of area between �R2 and 4�R2

/
3 around it (depending on

the distance of the transmitter and the intended receiver), and
the nodes located in this area (depicted in grey) cannot trans-
mit. Wireless mesh networks that do not use 802.11 often use
busy tones [3] to avoid the hidden terminal problem. In that
case all nodes hearing a packet transmission start sending a
busy tone, and all nodes who hear the busy tone are prevented
from transmitting. If the node density is high, all nodes at a dis-
tance of about 2R from a transmitting node (in a total area of
4�R2) are prevented from transmitting. Therefore, the number
of nodes disallowed when a given transmission takes place is
similar (within a constant factor) when a busy tone mechanism
or an RTS/CTS mechanism is used, and is proportional to R2.

ronments α > 2 (α is close to 4 for urban environments), we
can conclude (at least for dense networks) that for R suffi-
ciently small the network throughput is mainly constrained
by capacity/interference limitations, while for R sufficiently
large it is constrained by energy limitations.

Equations (2) and (3) show that the capacity/interference
limitation and the energy limitation depend in similar ways
on the average physical distance L in the network, with
the achievable throughput per node falling as L increases.
Another conclusion drawn from the above discussion is that
even though the capacity/interference limitation decreases
as the area node density ρ increases, the energy limitation
is independent of ρ. In summary, we expect networks that
are sparse or that have a small recharging rate X, or use a
large transmission radius R to be mainly energy-limited as
opposed to capacity/interference limited.

7. PERFORMANCE RESULTS UNDER
THE DYNAMIC ONE-TO-ONE
COMMUNICATION MODEL

In this section we compare the performance of the
SUM/MIN Energy algorithm, presented in Section 4, to
that of the Minimum-Hop algorithm in the context of
the dynamic one-to-one communication model. Under this
model, packets are generated at each network node accord-
ing to a random process, and energy is also added at each
node at a given recharging rate, over an infinite time horizon.
All packets are assumed to have equal length, and require
one slot in order to be transmitted over a link. Time is slotted,
and a new packet is generated at each node with probability
p during a slot. In our experiments, the duration of the slot
is 0.08 s while the packet transmission time 0.016576 s, for
the 2000 bytes sized packets we use in our experiments.
We chose this slot time in order for the RTS/CTS hand-
shake mechanism to have been completed by the time the
next packet is generated. Packet destinations are uniformly
distributed over all nodes.

In addition to the usual capacity and interference
constraints, the network is also assumed to be energy-
constrained. More specifically, we assume that energy is
generated at each node at a recharging rate of X units of
energy per slot. Initially the network is without energy.
Each packet transmission consumes an equal amount of
energy E. Furthermore, we define a threshold on the resid-
ual energy of a node, and when the energy at a node falls
below this threshold, the node stops forwarding packets and
starts storing them in its queue. The same happens when
the receiver’s residual energy is below this threshold. Each
node periodically checks its energy reserves and those of its
neighbours, and if they both exceed the threshold the node
starts forwarding its queued packets.

We are interested in the steady-state performance of the
proposed schemes for varying recharging rates and packet
generation probabilities. The network is assumed to have
reached the steady state when the variance in the packet
delivery delay is below some threshold. The network topol-
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Fig. 10. Illustrates the packet delay (in slots) as a function of the
packet generation rate p for the Minimum-Hop and the SUM/MIN
Energy (Energy-Aware) algorithms, for energy recharging rates of
(a) X = 5 · 10−3 Joules per slot and (b) X = 9 · 10−3 Joules per

slot.

ogy in our experiments is that of Figure 3a where the
transmission range of the network nodes is uniformly dis-
tributed between 50 and 100 m. The performance metrics
of interest are the largest packet generation probability pmax

for which the network remains stable (maximum through-
put) and the average packet delivery delay for a given packet
generation probability p < pmax. By stability we mean that
the incoming traffic can be served appropriately, with small
average packet delay and high packet delivery ratio. When
either of these conditions is broken, the network is assumed
to enter the unstable region and there is no point in further
studying it. Each measured value, represented in the graphs,
corresponds to the average of a set of 10 experiments.

Figure 10 shows the average packet delay as a func-
tion of the packet generation rate p, for recharging rates
of X = 5 · 10−3 and X = 9 · 10−3 Joules per slot,‡ for
both the Minimum-Hop and the SUM/MIN Energy routing
algorithms. The SUM/MIN Energy algorithm outperforms
the Minimum-Hop algorithm, by enabling the network to
remain stable for heavier traffic loads. For the topology
considered, the traffic generation probabilities p that the
SUM/MIN Energy algorithm is able to handle, with ade-
quately small packet delivery delay, are nearly twice those
of the Minimum-Hop algorithm, for both recharging rates
considered. The transition of the network to the unstable
region, as indicated by the rise in the average packet delay

‡ To be more specific, energy equal to 0.005 and 0.009 J was offered
every 10 s in the experiments.

in Figure 10, is very steep for the Minimum-Hop algorithm
for both recharging rates X = 5 × 10−3 and X = 9 × 10−3

Joules per slot: from values of the delay around 4 or 5
slots in the stable region, there is an almost instant increase
to large (practically infinite) values above 100 slots. This
is because when the Minimum-Hop algorithm (which is
not energy-efficient) is used, the network for both values
of the recharging rate X is energy constrained. When the
energy at some nodes gets depleted, the energy of many
other nodes also starts getting depleted soon afterwards,
and the rise in the delay is very abrupt. In this state, the
delivery of the incoming packets becomes difficult (large
delays) or impossible (dropping of packets) due to the weak-
ened connectivity of the network. When the SUM/MIN
Energy algorithm is used and for the low recharging rate
X = 5 × 10−3 Joules per slot the network is again energy-
constrained, but because it uses energy more efficiently, the
rise in the delay is less abrupt than with the Minimum-Hop
algorithm. When the SUM/MIN Energy algorithm is used
and the recharging rate is relatively high, X = 9 × 10−3

Joules per slot, the network is mainly capacity-constrained
and the rise in the delay is rather smooth.

Figure 11 shows the number of packets received with
respect to the number of packets sent, for recharging rates
X = 9 × 10−3 and X = 15 × 10−3 Joules per slot. It can be
observed that the SUM/MIN Energy algorithm achieves a
higher throughput than the Minimum-Hop algorithm, since
the degradation of the received-to-sent packets ratio begins
later than with the Minimum-Hop algorithm. For both algo-
rithms, the number of packets delivered to their destinations
grows linearly, initially, with the number of packets that
enter the network, since for light traffic few packets are
dropped. For packet generation probabilities greater than
pmax, however, there is a steep decline in the packet deliv-
ery ratio. The number of packets successfully delivered to
their destinations not only stops increasing as the number
of incoming packets grows, but it even declines after the
network enters the unstable region.

Figure 12 shows the maximum throughput (maximum
packet generation probability) pmax for which the net-
work remains stable as a function of the recharging rate
X at the network nodes, for both the Minimum-Hop and
the SUM/MIN Energy routing algorithm. The maximum
throughput pmax achieved by the network is taken to be
the highest packet generation probability for which the net-
work manages to serve the incoming traffic appropriately,
meaning with small average packet delivery delay and high
packet delivery ratio. The thresholds set for these two met-
rics used for detecting experimentally when the network
enters the unstable region (above 100 slots for the aver-
age packet delivery delay and under 80% for the delivery
ratio) are not important qualitatively for the results obtained,
since we found that a different setting of the thresholds only
causes a small shift in the values presented without altering
any of the conclusions drawn.

Figure 12 shows that the SUM/MIN Energy algorithm
outperforms the Minimum-Hop algorithm, achieving sig-
nificantly larger pmax for all recharging rates considered.
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Fig. 11. The number of the packets received versus the number of packets sent for the Minimum-Hop and the SUM/MIN Energy
(Energy-Aware) algorithms, for energy recharging rates of (a) X = 9 · 10−3 Joules per slot and (b) X = 15 · 10−3 Joules per slot.
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Fig. 12. The maximum throughput (maximum packet genera-
tion probability) pmax for which the network remains stable as
a function of the recharging rate X (Joules per 10 s) at the net-
work nodes, for the Minimum-Hop and the SUM/MIN Energy

(Energy-Aware) algorithms.

The maximum throughput pmax seems to depend on the
recharging rate almost linearly until the very end, for
both routing algorithms. This linear increase verifies that
the network in this region of recharging rates is energy-
constrained.
When the recharging rate increases beyond some point, the
network starts getting constrained by capacity/interference
limitations, and the rate at which pmax grows with respect
to the recharging rate is slowed down, until it reaches a
plateau indicating that the capacity/interference limitation
has been reached. The performance difference between
the SUM/MIN Energy algorithm and the Minimum-Hop
algorithm is larger for low energy recharging rates at the
nodes, and the difference is gradually reduced as the limi-
tation posed by the network capacity is approached. The
maximum throughput pmax achieved by the SUM/MIN
Energy algorithm is nearly twice that of the Minimum-Hop
algorithm. This is because the further away the network is
from the capacity-constrained region, the more important
becomes the efficiency in the use of the energy resources.
In summary, when energy is the factor defining the ability of
the network to serve incoming traffic, the SUM/MIN Energy

algorithm performs better. However, as energy becomes
abundant and capacity becomes the main limitation on
network performance, the performance gap between the
SUM/MIN Energy and the Minimum-Hop algorithm is nar-
rowed.

8. CONCLUSIONS

We proposed and evaluated the performance of several
multi-cost energy-aware routing algorithms for wireless
mesh networks. Multi-cost routing is a generalization of
both single-cost and multi-constrained routing, and is sig-
nificantly more powerful than these approaches. In the
experiments conducted under the network evacuation model
we found that the multi-cost energy-aware routing algo-
rithms distribute the traffic more uniformly across the
network, prolonging its lifetime and improving its per-
formance. More specifically, the Energy-Hop algorithms
were found to have better performance than both the
Energy and the Minimum-Hop algorithms, under the energy
and network related performance measures used. We then
turned our attention to the dynamic one-to-one communi-
cation model, where mesh nodes are able of recharging
their energy, and examined the impact the capacity and
energy constraints have on network performance for two-
dimensional networks. We also evaluated the performance
of multi-cost energy-aware routing algorithms under this
model and showed that they achieve a very satisfactory
average delay and maximum throughput (the throughput
is twice that of minimum-hop routing when the network is
energy-constrained).
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