
Resource Selection for Tasks with Time
Requirements Using Spectral Clustering

Nikolaos D. Doulamis, Member, IEEE, Panagiotis Kokkinos, and Emmanouel (Manos) Varvarigos

Abstract—Resource selection and task assignment are basic operations in distributed computing environments, like the grid and the

cloud, where tasks compete for resources. The decisions made by the corresponding algorithms should be judged based not only on

metrics related to user satisfaction, such as the percentage of tasks served without violating their quality-of-service (QoS)

requirements, but also based on resource-related performance metrics, such as the number of resources used to serve the tasks and

their utilization efficiency. In our work, we focus on the case of tasks with fixed but not strict time requirements, given in the form of a

requested start and finish time. We propose an algorithm for assigning tasks to resources that minimizes the violations of the tasks’

time requirements while simultaneously maximizing the resources’ utilization efficiency for a given number of resources. The exact

time scheduling of the tasks on the resources is then decided by taking into account the time constraints. The proposed scheme

exploits concepts derived from graph partitioning, and groups together tasks so as to 1) minimize the time overlapping of the tasks

assigned to a given resource and 2) maximize the time overlapping among tasks assigned to different resources. The partitioning is

performed using a spectral clustering methodology through normalized cuts. Experimental results show that the proposed algorithm

outperforms other scheduling algorithms for different values of the granularity and the load of the task requests.

Index Terms—Resource assignment, spectral clustering, graph partitioning, interval scheduling, soft time constraints

Ç

1 INTRODUCTION

THERE are several ways to express the quality-of-service
(QoS) requirements of the tasks submitted to a

distributed computing environment, such as the grid and
the cloud [1]. The most common way to describe QoS in a
grid or cloud environment is through task deadlines.
However, if QoS is defined through deadlines alone, there
is no direct relation to the time period a task uses a resource
and/or to the price the corresponding user will be charged
for this use, an important consideration in commercial
distributed computing infrastructures. For example, a task
with a late deadline may require short execution time, while
a task with an imminent deadline may correspond to a
heavy computation workload, and vice versa.

An alternative way to express the QoS requirements is
through a task’s start time, duration, and dependencies on
other tasks. However, in real-life applications, predicting
the execution time of a task is not a straightforward process,
even though some related works exist for specific applica-
tion domains (e.g., in [2] for 3D image rendering).

A different approach is to specify the tasks’ QoS by their
requested start and finish times [3]. In such a description,
users know a priori the time period during which they need
a resource, or the amount they can afford to pay for it
(which translates directly to time) and the question is to
select the resources they should utilize. It is often both

acceptable and expected that the actual time interval
allocated to a task may differ, to some degree, from the
requested one. This is because of two problems: 1) the tasks
compete for resources with each other and 2) a task often
takes more execution time than the requested duration. In
this paper, we propose an optimal resource selection
strategy for addressing the first, the task contention,
problem in a grid or cloud environment where each task
requests a given time interval (defined by its start and end
times) for execution. In case a task does not complete
execution within this time period, preemption is a common
approach, where the remaining task workload is assigned
to another resource interval.

Such a QoS definition fits particularly well with the
cloud computing environment. In cloud computing, virtual
services are created on the fly and schemes that perform in
advance timed reservations are often used to guarantee
service execution on virtual machines [4], [5]. When a task’s
QoS is defined as its requested start and finish time, it is
directly related with the time reservations of the resources
and, thus, with the price the user is expected to pay.
Alternative QoS measures can usually be obtained easily,
once the start and finish times are given, and can, therefore,
be considered of a secondary nature.

1.1 Previous Approaches
The primary objective of most existing scheduling ap-
proaches is to improve system resource utilization, while
the quality of service experienced by grid/cloud users is, at
best, a secondary consideration [6], [7]. Still, several QoS
scheduling algorithms have been reported in the literature,
using different QoS definitions and, thus, trying to achieve
different objectives. In Section 1.1.1, we briefly describe the
state of the art in case the task QoS requirements are defined
through task deadlines and durations. In Section 1.1.2, we
focus on corresponding algorithms for the case where the
tasks’ QoS requirements are defined through their re-
quested start and finish times.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014 1

. N.D. Doulamis is with the National Technical University of Athens, 9,
Heroon Polytechniou Str., 157 73 Zografou, Athens, Greece.
E-mail: ndoulam@cs.ntua.gr.

. P. Kokkinos and E. Varvarigos are with the Department of Computer
Engineering and Informatics, University of Patras, Patras University
Campus, Building B, Rio, Patras 26504, Greece.
E-mail: {kokkinop, manos}@ceid.upatras.gr.

Manuscript received 8 Nov. 2010; revised 24 Aug. 2012; accepted 28 Aug.
2012; published online 11 Sept. 2012.
Recommended for acceptance by J. Weissman.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-11-0610.
Digital Object Identifier no. 10.1109/TC.2012.222.

0018-9340/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

1.1.1 General Scheduling Algorithms

When the tasks’ QoS requirements are given in the form of
task deadlines, the most well-known scheduling algorithm is
the Earliest Deadline First (EDF) [8]. Another approach is the
Slack Time algorithm, also referred to as Least Laxity First
(LLF) [9], where the tasks are selected for execution in order
of nondecreasing slack time, defined as the difference
between the task’s relative deadline and its remaining
computational time. A framework for providing hard dead-
line guarantees in a grid environment, by controlling the rate
and burstiness with which users submit jobs to resources, is
proposed in [10].

In the case where the infrastructure consist of a cluster of
servers, several schedulers have been developed, including
Maui [11], the portable batch system (PBS) [12], and the load
sharing facility (LSF) [13]. Most of the scheduling algorithms
proposed so far for grids provide a best effort (nonguar-
anteed) service to the submitted tasks [14] and try to optimize
a single or multiple metric(s) of interest (for example, task
delay, probability to miss a deadline, etc.). Scheduling
algorithms also exist that take into account the users’ QoS
requirements (delay, required number of CPUs, etc.) and try
to serve them in the best possible way [15]. Fairness in grid
scheduling has been considered in [16], [17], where the
proposed algorithms allow for the “fair” sharing of dead-
lines’ violations among all users. Genetic algorithms have
also been widely used for solving NP-complete scheduling
problems; see, for example, the works of [18], [19], [20], [21].

Reservation algorithms have been studied in many
works [1], [22], [23], as a way to provide QoS guarantees.
The Globus Architecture for Reservation and Allocation
(GARA) [24] and the grid quality-of-service management
(G-QoSm) framework [25] are such examples. The scal-
ability problem of resource selection algorithms is ad-
dressed in [26], where it is shown that decoupling resource
selection from time scheduling is beneficial.

QoS and workflow issues have also been investigated
in the literature. Related works usually model dependen-
cies through Directed Acyclic task Graphs (DAG), and
provide scheduling algorithms for heterogeneous or
homogeneous computing environments [27], [28], [29],
[30], [31]. Performance results for such algorithms are
presented in [32].

1.1.2 Interval Scheduling

Our work relates to a particular flavor of the scheduling
problem, which is called the interval scheduling problem,
also known as fixed job scheduling [33]. In interval schedul-
ing, a list of tasks is given as a set of requested time intervals
and the scheduler decides if it can accept or not a task, and, in
the second case, assign it to some resource. There are several
variants of the problem:

. One variant assumes an unrestricted number of
resources and the objective is to find a minimum-
cost schedule that does not reject any tasks [34].

. Another variant assumes a fixed number of re-
sources and a predefined profit associated with the
successful execution of each task. The objective is to
find a maximum-profit schedule in which some, but
not necessarily all, of the tasks are assigned to the
resources [3].

. The third case refers to a variant of the aforemen-
tioned problems where each task has a set of possible
starting times, instead of a single starting time [35].

. Finally, in the online interval scheduling problem
tasks are generated one by one and the scheduler has
to make a decision for each task before a new task
arrives. The objective is to maximize the total length
of the intervals assigned to tasks, while ensuring that
no pair of tasks assigned to the same resource
overlap in time [36].

In [33], the interested reader can find a survey of the
interval scheduling literature. In the current paper, we focus
on the second type of interval scheduling algorithms. This
variant of the problem can be modeled using a min-cost
flow formulation (see [3], [37]). In the case that all jobs have
unit weight, greedy algorithms are proposed in [38], [39] for
estimating the maximum number of jobs that can be served.
Heuristic and exact algorithms have been proposed in [40]
for the case where each job can be executed only on a given
subset of machines.

The interval scheduling problem can also be formulated
using interval graphs. A node in the interval graph
corresponds to a task and there is an edge between nodes
whose task intervals overlap. Hence, the basic interval
scheduling problem is in fact a coloring problem of the
interval graph (see [41]). Interval graph scheduling can also
be formulated as a graph partitioning problem, where the
interval graph is partitioned so as to satisfy a multiobjective
criterion. Graph partitioning is a kind of task clustering.
Task clustering has been used in the literature for task
scheduling in grids. Examples can be found in [42], [43],
where two task routing policies (one static and one
adaptive) and six task scheduling policies are examined.
Methods with similar goals include workflow allocation,
mixed local, and global scheduling [44], [45].

1.2 Contribution

Tasks generally compete for resources, and the situation
often arises that they cannot all be assigned to the limited
resources without overlapping in time. The Interval sche-
duling approaches mentioned in Section 1.1.2 handle this
situation by rejecting the overlapping tasks or assigning
them to a subsequent scheduling period. This increases
delays and may cause cascading effects in case of dependent
tasks, making resource assignment a challenging problem.
Additionally, this is not a fair policy, since tasks submitted
by users that pay the same price, or contribute equally to a
common infrastructure and should, therefore, have the same
priority, are handled in uneven ways.

A different approach, which is the one taken in our work,
is to apply a resource assignment algorithm that minimizes,
but does not eliminate, the overlapping of the tasks
assigned to the same processor. In this context, the tasks’
time constraints are not hard, but they are soft and their
violations have to be minimized. We will refer to this
interval scheduling with soft time constraints problem, as
the Soft Interval Scheduling problem. The decisions taken are
not related to accepting or rejecting a task, since all tasks can
be accepted, but on where to assign a task so as to minimize
their time overlapping. Then, the overlapping tasks are time
shifted as needed to obtain a feasible assignment. Of course,
this may cause cascading effects, leading to more time
overlaps, implying further deviations between the re-
quested and the actual time intervals. Our objective is to
minimize the time shifts required to serve all the requests.
This approach acknowledges the fact that such time shifts
are actually quite expected, acceptable, and often necessary,
since resources are limited and tasks do not generally have
deterministic durations.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

We can extend the traditional interval scheduling
algorithms to be implemented under a soft constraint
framework. For example, in the Maxima IS case (see [33]),
we can allow tasks’ shifts, when a conflict takes place,
assigning them to the resource that provides the minimum
completion time. In contrast, the conventional approach
removes the conflicting task, which is then scheduled in a
subsequent scheduling period.

Although the minimization of the time overlaps meets to
the degree possible the tasks’ QoS requirements, leading to
minimal time shifting of the tasks, an additional considera-
tion should be to also optimize resource utilization, so as to
obtain a nonwasteful distributed computing architecture.
A drawback of existing scheduling approaches is that task
assignment is performed either in the direction of max-
imizing the overall resource utilization efficiency or in the
direction of satisfying users’ QoS requirements. We argue
that a successful algorithm should take into account both
considerations, and we address the problem by proposing
a novel algorithm that, for a given number of resources,
assigns tasks to processors so that 1) the time overlapping
between tasks assigned on the same processor is minimized
(users’ QoS requirements are met to the degree possible),
while simultaneously 2) overall resource utilization efficiency
is maximized.

To solve the aforementioned dual-objective task assign-
ment problem, graph partitioning techniques are exploited
in this paper. The soft interval scheduling problem is first
reduced to a graph partitioning problem, which is then
addressed using an M-way graph partitioning methodol-
ogy [46]. In our case, graph partitioning is performed
based on spectral clustering through the use of normalized
cuts [47]. The normalized cuts method has advantages over
the traditional min-cut methods, as it does not favor the
creation of small clusters. To handle this issue, traditional
graph partitioning methods, like geometric and multilevel
graph partitioning, impose balancing criteria [47]. How-
ever, predefining the partition size may be in conflict with
the actual data statistics (in our case, the requested start
and finish times), where sometimes unbalanced partitions
are more appropriate. The use of normalized cuts resolves
this issue, by automatically estimating the partition size
with respect to the diversity of the tasks’ duration within
each partition.

We refer to our proposed task allocation scheme as the
Spectral Clustering Scheduling (abbreviated SCS) algorithm.
An advantage of the SCS algorithm is that it can be used in
two different ways. The first is to efficiently schedule tasks
on a given number of resources so as to minimize the task
time requirement violations. The second is to find the
number of resources or virtual machines required to serve
the tasks with a given level of task time violations (or with
no violations). The latter approach is particularly helpful in
a cloud computing environment, where a resource provider
should be able to estimate the service-level agreement (SLA)
offered to its users for a given number of virtual machines
(resources) used.

The present work extends our earlier work in [48], in
several ways. First, we treat the QoS requirements as soft
constraints, the violation of which should be minimized,
instead of hard constraints (reject overlapping tasks).
Second, we define metrics for measuring scheduling
efficiency, suitable for the soft constraints case, instead of
measuring the performance of the clustering schemes as [48]
does. Third, we provide extensive comparisons with other

scheduling algorithms (that assume soft and hard time
constraints) and we use real-world workload traces to
evaluate the efficiency of the proposed method.

2 PROBLEM FORMULATION

We assume that resource assignment is activated at periodic
time intervals of duration T . Within time T , N tasks will be
collected and request to be served on one of the M available
resources. The users’ scheduling needs are expressed
through the requested start and finish times of the
submitted tasks Ti; i ¼ 1; 2; . . .; N , denoted by STi and FTi,
respectively. In what follows, we discuss two different
computing paradigms our scheme applies to.

Cloud Computing Paradigm. The proposed method is in
good accordance with the cloud Computing paradigm,
where users pay for the resource usage with a specific
number of computation units (e.g., Amazon EC2). In this
scenario, a user requests the time period he/she want to use
the cloud resources, expressed as requested start and finish
times, STi and FTi. Then, the resource provider activates a
set of virtual machines for serving the tasks. Since the
activation of a virtual machine entails a cost for the resource
provider, an optimization strategy able, on the one hand, to
maximize the resources utilization and, on the other,
minimize the task overlaps and the consequent time shifts
(increase users’ satisfaction) are of primary importance for a
cloud computing provider.

Grid Computing Paradigm. In this scenario, each task
requests service from the grid platform with a specific start
and finish time. The problem is to assign each task to a
resource so as to obtain 1) minimum violation between the
requested and the actual start/finish times achieved, and
simultaneously, 2) maximum utilization of the available
resources. We will see that these two objectives are
simultaneously achieved, for a given number of resources.
There is, however, a tradeoff between and the resource
utilization and the violation of the tasks’ time requirements,
obtained by varying the number of resources. In particular,
as the number of resourcesM increases, the time deviation of
the tasks decreases and the resource utilization also
decreases. Overall, the proposed algorithm optimizes the
deviation of the tasks’ time requirements at any given
utilization value.

The start and finish times can be obtained by the tasks’
start time, the respective expected duration, and the tasks’
dependencies. If the actual execution time of a task turns
out to be larger than the duration initially requested, there
are two possibilities for the server. In the first option,
the task stops its execution and requests a new resource
assignment for the remaining workload (preemption pol-
icy). In the second option, the task continues its execution,
and thus, the respective resource is unavailable for other
tasks (which are then delayed in time, possibly delaying
other tasks also) for the corresponding duration. Both
scenarios can be addressed by the resource allocation
method to be proposed, even though in the current paper,
we focus on the first option.

Dependencies among tasks are modeled using a Directed
Acyclic Graph G ¼ fN;Ag, where a node u 2 N represents
a task, and an arc u! v 2 A represents the dependence of
task v on u; v cannot be executed before u finishes execution.
Assuming constant communication delays, we can derive
the requested start and finish times of all tasks [49] before
assigning them to resources.

DOULAMIS ET AL.: RESOURCE SELECTION FOR TASKS WITH TIME REQUIREMENTS USING SPECTRAL CLUSTERING 3

2.1 Problem Statement

As already mentioned, we set dual objectives for the
resource assignment strategy: we want, on the one hand, to
minimize the tasks’ QoS conflicts and violations and, on the
other, to maximize resource utilization. The first objective
can be expressed as a minimization of the task overlapping
(or equivalently maximization of the task nonoverlapping)
among all tasks assigned on the same resource, while the
second can be expressed as the maximization of the over-
lapping (nonoverlapping minimization) among all tasks
assigned to different resources.

In particular, let V ¼ fT1; T2; . . .; TNg be the set of N tasks
requesting service, and R ¼ f1; 2; . . .;Mg be the set of the
M available resources. We also let Ti 2 V ! r 2 R be the
operator that assigns the task Ti to a resource r. We also
denote by Cr the set of tasks assigned to resource r 2 R, that
is, Cr ¼ fTi 2 V : Ti ! rg. Then, the optimal resource
assignment can be formulated as the problem of finding
the optimal selection of the sets Ĉr, for all r 2 R, that
simultaneously maximize and minimize the following:

Ĉr : max
XM
r¼1

X
i2Cr;j2Cr

�ij; min
XM
r¼1

X
i2Cr;j62Cr

�ij: ð1Þ

In (1), �ij defines the nonoverlapping degree between two
tasks Ti and Tj

�ij ¼
a; if Ti;Tj non� overlapping in time

að1� wijÞ if Ti;Tj overlapping in time

�
ð2Þ

where a is a constant andwij 2 ½01� represents the percentage
of the overlapping duration, defined as the ratio of the time
overlapping between Ti and Tj over their overall duration.
For the example of Fig. 1, we have w5;4 ¼ 3=ð6þ 5Þ because
the duration of 4 and 5 are 6 and 5 units, respectively. It
should be noted that the proposed algorithm is independent
from the definition of the overlapping measure and that
other metrics can also be used.

2.2 Task Order in Using a Resource

In our soft interval scheduling problem, we want to decide
the resource and time interval each task will be assigned at
to optimize the dual objectives mentioned above. Once the
tasks have been assigned to processors, we also have to
decide the way time conflicts are resolved. In our approach,
the order in which conflicting tasks use a resource is
determined from their start time; tasks with the earliest
assigned start time are served first.

To indicate the advantages of our soft interval scheduling
scheme over the conventional (hard) interval scheduling
algorithms, consider the example of Fig. 1, where eight tasks
request service within time interval T . Table 1 presents the
resource assignment results and the respective time devia-
tion using the (hard) Maxima IS algorithm [37] and the
proposed (soft) SCS approach. The maxima IS algorithm

initially sorts the tasks in chronological order of their
requested start times and then, in case of task overlapping,
it removes the conflicting tasks and in particular the one
with the largest ending time, and schedules them in the next
assignment period.

By time deviation, we mean the difference between
the requested and the actually assigned start time of a task.
As is observed, the accept/reject policy used by conven-
tional interval scheduling approaches is not a fair policy
because some tasks undergo much greater time deviations
than other tasks. In addition, it is not an optimal strategy in
terms of task overlapping and resource utilization.

In contrast, a task assignment policy that tries to
minimize task overlapping (as the SCS algorithm, to be
described in Section 2, does) instead of rejecting tasks can
provide much better results in terms of time deviation and
utilization of the resources. For example, consider the case
where tasks 1, 2, 5, 6, and 8 are assigned to resource #1,
while tasks 3, 4, and 7 are assigned to resource #2. To resolve
time overlapping, the task with the smaller requested start
time is executed first. Table 1 presents the respective time
deviations. It is clear that this assignment is much more
fairer than the one obtained by the Maxima IS algorithm,
resulting in minimal task overlapping and corresponding
time deviations (the total time deviation for SCS is 5 time
units while for the Maxima IS it is 32 units). In addition, this
policy results in a better exploitation of the resource
(62.5 percent for Maxima IS and 81.25 percent for SCS).

2.3 Online Strategy

As already mentioned, despite the minimization of task
overlapping [see (1)], it is possible for tasks with over-
lapping time requirements to be assigned to the same
resource. This implies that some of the tasks will be shifted
in time and the actual start and finish times of a task, ST

ðaÞ
i

and FT
ðaÞ
i , will differ from the requested ones STi and FTi.

This dynamically modifies the number of available re-
sources at a given assignment interval.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

Fig. 1. An example of eight tasks requesting service during a time

interval T , and their requested start and finish times.

TABLE 1
The Time Deviations for the Eight Tasks of Fig. 1
in Case of the Maxima IS and the SCS Algorithm

In particular, assume that the resource assignment
strategy has been activated k times, and we are at the
kth assignment interval [ðk� 1ÞT; kT Þ. At this time, the
resource assignment policy has already been applied for all
tasks whose requested start times are less than ðk� 1ÞT .
Tasks whose requested start times are smaller than kT but
greater than ðk� 1ÞT are assigned in the current resource
assignment interval. If the actual finish time FT

ðaÞ
i of an

assigned task i (with requested start time smaller than
(k� 1)T) has not elapsed at the kth activation of the resource
assignment, task i continues to execute on the same resource
in the kth interval, making the resource unavailable until it
is completed, and possibly causing other tasks in the
kth interval to be shifted. An alternative approach for tasks
that are not able to finish execution during their assigned
time interval (either due to their being time shifted by other
tasks, or because their actual execution time took longer
than expected), would be to adopt a preemption policy. In
this case, the task stops execution, an overhead is kept by the
resource provider and the task requests for a new execution
at the next time interval.

3 JOINT OPTIMIZATION OF RESOURCE

PERFORMANCE AND QoS REQUIREMENT

3.1 Graph-Based Representation

A convenient way to solve (1) is to view task assignment as
a graph partitioning problem. In particular, let G ¼ fV ;Eg
be a weighted undirected graph, the interval graph, whose
vertices V ¼ fT1; T2; . . .; TNg correspond to the N tasks
requesting service within the scheduling period. The weight
of an edge between Ti and Tj is taken equal to the
nonoverlapping degree �ij � 0 of the tasks. Since �ij ¼ �ji,
G is undirected. Note that a graph edge indicates pairwise
(dis) similarity between the tasks.

Fig. 2 presents an example of an interval graph with four
tasks (nodes), and edges whose weights correspond to the
nonoverlapping degrees �ij. We observe that tasks T1; T3

and T2; T4 do not overlap [see (2)].

3.2 Normalized Cut Spectral Graph Partitioning

In our approach, a normalized cut spectral graph partition-
ing algorithm is adopted for resource allocation. This choice
was made because the traditional spectral graph partitioning
min-cut algorithm [47] would favor the creation of too many
small partitions. By optimizing the minimum cut criterion
(Fig. 2a), we attempt to assign highly overlapping tasks to
different resources (recall the definition of the �ijs). How-
ever, by doing so, we account only for the overlapping of

tasks on the same resource and favor the cutting of small sets
of isolated nodes in the graph. In Fig. 2a, the minimum cut
criterion would assign task T1 to the first resource, and the
other three tasks to the second; something that is undesirable
when the overlapping among tasks T2; T3, and T4 is high. On
the other hand, by optimizing the normalized minimum cut
criterion, the partitioning of the tasks is improved, as seen in
Fig. 2b, where the objectives of maximizing the overlapping
of tasks in different resources, while minimizing the over-
lapping in the same resource, are satisfied.

Thus, to avoid solutions that use too many cuts (i.e., too
many processors, in the scheduling context), normalization
factors are added to (1) [47], as follows:

Qr ¼
P

i2Cr;j2Cr �ijP
i2Cr;j2V �ij

; �r ¼
P

i2Cr;j62Cr �ijP
i2Cr;j2V �ij

: ð3Þ

The denominator in (3) is the overlapping degrees of the
tasks mapped to resource r for all the N tasks, including the
ones assigned to r, and it is used for normalization purposes.
Otherwise, optimizing only the numerator of (3) would favor
the solution of one task per resource (see Fig. 2). Parameter
Qr expresses a measure of the overall QoS violation for the
tasks assigned to the rth processor. Similarly, �r is a measure
of the utilization efficiency achieved for processor r.
Considering all the M resources of the grid, we define
measures Q and � for the total tasks’ QoS violation and
resource utilization as

Q ¼
XM
r¼1

Qr � ¼
XM
r¼1

�r: ð4Þ

3.2.1 Normalized Cut Problem Statement

The formulation of (1) can be rewritten as follows:

Ĉr : max
XM
r¼1

P
i2Cr;j2Cr �ijP
i2Cr;j2V �ij

; min
XM
r¼1

P
i2Cr;j 62Cr �ijP
i2Cr;j2V �ij

; ð5Þ

where Ĉr denotes the set of tasks assigned to resource r, in
the optimal solution. Equation (5) ensures that tasks are
assigned so as to not only maximize the nonoverlapping
degree of all tasks within a resource but also to minimize
the nonoverlapping degree among the M available re-
sources. It can be proven, however, that � and Q are related
through

�þQ ¼M: ð6Þ

Given (6), the optimization of (5) can be rewritten as

Ĉr : max M �
XM
r¼1

P
i2Cr;j62Cr �ijP
i2Cr;j2V �ij

 !
; min

XM
r¼1

P
i2Cr;j62Cr �ijP
i2Cr;j2V �ij

or equivalently Ĉr : min
XM
r¼1

P
i2Cr;j62Cr �ijP
i2Cr;j2V �ij

:

ð7Þ
Equation (7) shows that the maximization of Q results in

the simultaneous minimization of �, and vice versa, for a
given number of resources. This is intuitively satisfying,
since scheduling a set of tasks in a way that makes efficient
use of resources is also expected to help meet the QoS
requirements of the tasks that are scheduled. Therefore, it is
enough to optimize only one of the two criteria [see (6)]. It is

DOULAMIS ET AL.: RESOURCE SELECTION FOR TASKS WITH TIME REQUIREMENTS USING SPECTRAL CLUSTERING 5

Fig. 2. Interval graph corresponding to four tasks: (a) applying the min-

cut criterion, (b) applying the normalized min-cut criterion. Since there

are two resources, the graph is partitioned in two parts.

clear, however, that there is a tradeoff that can be obtained
by varying the number of resourcesM, between the resource
utilization and the violation of the tasks’ time requirements.
In particular, as the number of resources increases, the time
deviation of the tasks decreases and the resource utilization
also decreases.

4 THE SCHEDULING ALGORITHM

4.1 Matrix Representation

Let us denote by � ¼ ½�ij� the matrix containing the
nonoverlapping measures �ij for all N �N pairs of tasks
Ti and Tj. Let us also denote by er ¼ ½� � � eur � � ��

T a N � 1
indicator vector, whose uth entry is given by

eur ¼
1; if task Tu is assigned to resource r
0; otherwise:

�
ð8Þ

Vector er indicates which tasks are executed on resource
r; indices of tasks assigned to resource r are marked with
one, and the remaining indices with zero. Since the
infrastructure consists of M resources, M different vectors
er, r ¼ 1; 2; . . .;M, are defined, each specifying the tasks
assigned for execution on a given resource. Therefore, the
optimization problem of (7) is equivalent to finding the
optimal indicator vectors êr.

A difficulty in optimizing (7) is that its right-hand side is
not express d in terms of the indicator vectors er. Thus, the
right part of (7) must be rewritten so as to include the
vectors er. To do so, we denote by L ¼ diagð� � � li � � �Þ the
diagonal matrix, whose elements li; i ¼ 1; 2; . . .; N , are equal
to the cumulative nonoverlapping degrees of Ti with the
remaining tasks, that is, li ¼

P
j2V �ij.

Using matrices L and �, we express the numerator of (7)
as a function of the vectors er. In particular, we have

eTr ðL��Þer ¼
X

i2Cr;j62Cr
�ij: ð9Þ

In a similar way, the denominator in (9) is written in
terms of the indicator vector er as

eTr Ler ¼
X

i2Cr;j2V
�ij: ð10Þ

Using (9) and (10), we can rewrite (7) as

êr; 8r : minQ ¼ min
XM
r¼1

eTr ðL��Þer
eTr Ler

: ð11Þ

4.2 Optimization in the Continuous Domain

Since each task has to be assigned to one resource, the
indicator vectors er must take binary values. Thus, if we
form the indicator matrix E ¼ ½e1 � � � eM �, the columns of
which correspond to the M resources in the grid and the
rows to the N tasks, the rows of E have only one unit entry
and the remaining entries are zero.

One way to solve (11) is to perform the minimization by
relaxing the integer constraints, that is, to allow matrix E to
take values in the continuous domain. We denote by ER

the relaxed version of the indicator matrix E, whose entries
take real instead of binary values. The idea is to first find the
optimal choice of the relaxed matrix ER, and then discretize
somehow the real values to obtain an approximately
optimal integer solution E.

The right part of (11) can be rewritten [51] as

Q ¼M � trace
�
YTL�1=2�L�1=2Y

�
; ð12aÞ

subject to

YTY ¼ I; ð12bÞ
where matrix Y is related to matrix ER through equation
L�1=2Y ¼ ER�. � is any arbitrary M �M matrix. In this
paper, we select � ¼ I. Then, the relaxed matrix ER, which
is actually the matrix we are looking for, is given by

ER ¼ L�1=2Y: ð13Þ
Minimization of (12) is obtained through the Ky-Fan

theorem [50], which states that the maximum value of
traceðYTL�1=2�L�1=2YÞ with respect to matrix Y, subject to
the constraint YTY ¼ I is given by the sum of the M
(M < N) largest eigenvalues of matrix L�1=2�L�1=2. Thus,

max
subject to YTY¼I

�
trace

�
YTL1=2� L�1=2Y

��
¼
XM
i¼1

�i; ð14Þ

where �i refers to the ith largest eigenvalue of matrix
L�1=2� L�1=2.

However, the maximization of (14) leads to the mini-
mization of Q in (12a), and the minimum value of Q is

minQ ¼M �
XM
i¼1

�i: ð15Þ

The Ky-Fan theorem also states that this minimum value
of Q is obtained for the matrix

Y ¼ UR; ð16Þ
where U is a N �M matrix whose columns are the
eigenvectors corresponding to the M largest eigenvalues of
matrix L�1=2�L�1=2 and R is an arbitrary rotation matrix
(i.e., orthogonal with determinant of one). Again, a simple
approach is to select R = I, in which case Y ¼ U.

Therefore, (12) is minimized at Y ¼ U and the minimum
value is given by (15). The optimal choice ÊR of the relaxed
matrix ER in the continuous domain is

ÊR ¼ L�1=2U: ð17Þ

Equation (17) means that the optimal relaxed matrix ÊR

is related to 1) the cumulative nonoverlapping degree of all
tasks and 2) the eigenvectors corresponding to the M largest
eigenvalues of matrix L�1=2�L�1=2.

4.3 Rounding the Solution

The optimal matrix ÊR, given by (17), does not have the
form of the indicator matrix E, since the entries of ÊR are
noninteger, while E’s entries are binary. Consequently, the
problem is how to round the continuous values of ÊR in a
way that approximates matrix E.

A simple rounding process is to set the maximum value
of each row of ÊR equal to 1 and the remaining values
equal to 0. However, this approach yields unsatisfactory
performance when there is no dominant maximum value
for each row of ÊR and it handles the rounding process as
N (number of tasks) independent problems.

An alternative approach, which we adopt in this paper,
is to treat the N rows of ÊR as M-dimensional feature
vectors. The algorithm clusters the rows of matrix ÊR to
M groups (the number of resources). Each row of ÊR

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

indicates the degree of “fitness” (the association degree) of
the corresponding task to each of the M resources.
Therefore, the goal of the algorithm is to find the resource
to which a task with a specific feature vector fits best.

It has been shown in [51] (see [51, Sections 2.2 and 2.3])
that such an approach, first adopted in [52], provides the
minimum Frobenius distance between the continuous and
the discrete solution, which is the closest approximate
solution to the continuous optimum.

In our case, discretization is achieved via the use of the
k-means algorithm on the rows of ÊR. In particular, we
initially normalize the rows of matrix ÊR to take values
between 0 and 1. Then, we apply the k-means clustering
algorithm to these N vectors to form the indicator
matrix E (for more details see Table 2).

5 EVALUATION METRICS

A parameter that affects resource assignment efficiency is

the task granularity g, defined as the ratio of the average task

duration Du over the time horizon T :

g ¼ Du

T
: ð18Þ

Task granularity is a measure of how large the generated
tasks are compared to the time window T. For example, a
value of g ¼ 0:01 indicates that the task occupies on the
average 1 percent of the scheduling time period for its
execution. Another parameter affecting the performance of
the algorithms is the number of tasks N that have to be
scheduled within the time interval T . Large values of N
increases the possibility of tasks’ overlapping.

A metric that describes the load of the system is

B ¼ NDu

T
¼ Ng; ð19Þ

which corresponds to the amount of resources required for
the tasks’ execution without overlapping in the (unlikely)
case that the tasks request consecutive disjoint intervals
within the time horizon T . However, in practice, this value
is much lower than the actual number of resources needed
for serving all tasks with no overlapping. To see that,
denote by �ðtÞ the number of tasks overlaps at any given
time t, and define � as the maximum value of �ðtÞ over all t,
0 � t < T , that is,

� ¼ max
t2½0 T �

�ðtÞ: ð20Þ

Let us denote by M̂opt the minimum number of recourses
required to achieve no task overlapping. M̂opt can be found
by applying an optimal (exhaustive search) scheduling
algorithm. In general, we will use “b” in case where task
overlapping is not allowed, and use the same symbol
without the “b” when overlapping is allowed. Of course,
M̂opt cannot always be found in practice, since the exhaustive
search is a nonpolynomial process [47]. Let us also denote by
M̂ðAÞ the number of resources required to achieve no task
overlapping by some scheduling algorithm A. It is clear that
we always have

B � � � M̂opt � M̂ðAÞ: ð21Þ

An algorithm A that uses MðAÞ processors achieves
utilization of these processors equal to

�ðAÞ ¼ B

MðAÞ : ð22Þ

It is clear that if MðAÞ < M̂opt, algorithm A fails to
feasibly schedule all tasks without overlapping. This can be
resolved using two policies; one is to reject the overlapping
tasks and assign them to a subsequent scheduling period
and the other is to adopt a “soft scheduling policy” and
remove task overlapping by time shifting the tasks, as
discussed in Section 2. In both cases, the QoS performance
of algorithm A can be expressed by a time deviation metric D
(A, �) that measures the deviation between the actual and
the requested start time for a given utilization �:

DðA; �Þ ¼ 1

NT

XN
i¼1

��STi � STai ��; ð23Þ

where STi refers to the requested start time of task i, while
ST
ðaÞ
i to its actual start time when using algorithm A. We

expect any reasonable algorithm to satisfy

lim
�!0

DðA; �Þ ¼ 0: ð24Þ

This is because as utilization tends to zero (by using a
large number of processors), the time deviation of any
reasonable algorithm should go to zero (no overlapping).

An efficient scheduling algorithm A is not one that
minimizes D(A; �), potentially using a large number of
resources and achieving very low utilization �. Instead, it
should minimize D(A; �) at the highest possible utilization
value, i.e., using the minimum number of resources. In case

DOULAMIS ET AL.: RESOURCE SELECTION FOR TASKS WITH TIME REQUIREMENTS USING SPECTRAL CLUSTERING 7

TABLE 2
The Main Steps of the Proposed Scheduling Algorithm

an algorithm A treats time constraints as hard and has to
schedule the tasks without time overlaps, an upper bound
on the achievable processor utilization is given by

�̂ ¼ B

M̂ðAÞ
� B
�
¼ �max

trace < 1;

when A uses hard time constraints:

ð25Þ

It is clear that M̂ðAÞ � � because the number of resources
estimated by the algorithm A to achieve no task overlapping
must be at least greater than the maximum number of tasks’
conflicts. Therefore, �max

trace ¼ B=� is always greater than the
utilization achieved by algorithm A [see (25)] resulting in an
upper bound with regards to utilization. The upper bound
�max
trace actually depends on the statistics (trace) of the

workload used. Note the upper bound on �̂ can be much
lower than 1. Instead �ðAÞ can take values close to 1 at the
cost of the increase of the time deviation metric DðA; �Þ due
to tasks’ overlapping. Therefore, B=� ¼ �max

trace expresses the
maximum utilization achieved assuming a perfect (ideal)
scheduling algorithm and it is dependent on granularity and
the trace itself because �max

trace is affected by the actual tasks’
overlaps within a scheduling period T . We use �max

trace for
comparing the proposed SCS algorithm to the corresponding
upper bound. As granularity increases, �max

trace increases
because smaller actual tasks’ overlaps � are encountered
within smaller scheduling periods, holding, however,B � �.

Another interesting metric is the ratio of the number of
resources utilized by an algorithm over the number of tasks
that request to be scheduled:

¼MðAÞ
N

: ð26Þ

The inverse of # expresses the operational gain G ¼
N=MðAÞ for the resource provider:

G ¼ �ðAÞ
g

: ð27Þ

Another important parameter is the selection of the
scheduling period T . Assuming that the provider dedicates
M(A) resources over a time period T , we can define the
computational power of the provider as

P ¼MðAÞ
T

: ð28Þ

For a given number of allocated recourses, the provider’s
computational power increases as scheduling period T

decreases. Then, the following proposition holds:

Proposition 1. When a resource provider operates under a
constant gain G, and assuming that the tasks arrive at a
constant rate � ¼ N=T , the computational power P of the
provider also remains constant.

The proof of this statement is straightforward since
G ¼ N=MðAÞ ¼ ðN=T Þ=ðMðAÞ=T Þ ¼ �=P ¼ constant.

Proposition 1 indicates that keeping the gain G constant
is equivalent to retaining the same computational power for
the provider. Thus, for the same traffic statistics (� and Du),
increasing the tasks’ granularity is equivalent to reducing
the scheduling period T , resulting in an increase of time
deviation delay [see (23)]. According to (27), as granularity
increases (decrease of T), utilization �ðAÞ increases (since

�ðAÞ ¼ G � g), assuming a constant operational gain (or
equivalent computational power). Increase of utilization
results in an increase of time deviation DðA; �Þ, since fewer
resources are used [see (22)].

6 PERFORMANCE RESULTS

Three different experimental setups were used; syntheti-
cally generated tasks through computer simulation, real
traces as described in Section 5.1.2, and real-life 3D image
rendering tasks, produced in the NEXTGRID project.

6.1 Nonoverlapping Task Scheduling: Zero Time
Deviation

In this section, we consider the case where the number of
resources is selected in a way that no task overlapping is
encountered (in that case, (23) gives D ¼ 0).

6.1.1 Probabilistically Generated Tasks

In the first set of experiments, we used a simulator to
generate the requested tasks’ start and finish times. The
simulator allows us to validate the SCS algorithm for
different loads B and different scenarios, such as symmetric
or asymmetric tasks (in terms of the variance of their
duration), and varying degrees of task dependencies. To
generate dependent tasks, we let a percentage of the
incoming tasks, for example, 20 percent, depend on other
tasks, so that they can start their execution only after the
completion of the tasks on which they depend.

The tasks’ requested start times are generated using a
uniform distribution over the time period T . In the case of
symmetric tasks, the requested finish time of task i is directly
calculated by adding the constant task duration di ¼ d to the
task start time STi; different values for the task durations D
are used to assess the SCS algorithm at different granularity
values. In the case of asymmetric tasks, we select the tasks’
durations randomly and obtain results for different var-
iances of the task durations from their average value. In the
simulator, we also force dependencies among the tasks, and
vary the degree of dependencies to see the way it affects SCS
performance. All the results were obtained by averaging
over 500 different realizations (instances) for each given
choice of experimental parameters, such as the degree of
task dependencies, load B and granularity g.

Fig. 3 presents the processor utilization � achieved by
the SCS algorithm versus the granularity g, for both
symmetric and asymmetric tasks and load B ¼ 10. In this

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

Fig. 3. Utilization factors � and upper bound �max
trace, versus granularity g,

for a symmetric and different asymmetric cases.

figure, we also depict the upper bound �max
trace. As expected,

when asymmetry increases, the processor utilization
decreases. The upper bound �max

trace cannot be achieved and
the difference of the actual utilization from it is about
50 percent for low values of g (fine granularity), increases
as g increases, and then drops to zero for high values of g
(coarse granularity). For large values of g, almost all tasks
overlap, since the task durations are then comparable to the
scheduling period duration T , making the minimum
number of processors M̂ðAÞ required for no task overlap
to be close to the number of tasks N , yielding a utilization
close to the upper bound. For small values of g, the number
of tasks increases and their duration decreases, slightly
improving the performance of SCS over the case of
medium granularity.

In Fig. 4, we present results on the performance of the
SCS algorithm for varying degrees of dependencies
between the tasks. We observe that as the dependencies
increase, the utilization factor improves. This is because
dependent tasks have a lower degree of overlapping than
independent tasks. For example, when all the tasks present
dependencies with each other, no task overlapping is
encountered, improving resource utilization.

6.1.2 Experiments with Real Trace Logs

In this section, we use real-life workload traces (described
in Table 3) for performance evaluation. Initially, we
compare the processor utilization achieved by SCS algo-
rithm to that achieved by scheduling algorithms based on
other graph partitioning methods, namely, the method
proposed by Scotch [53], the method proposed by Metis
[54], and the implementation of Zoltan, which is a multi-
level hypergraph partitioner [55]. We also compare SCS
with the Min-Cuts Tree method [56], which is a bisectional

graph partitioning method based on the maximum flow
algorithm. This procedure is iteratively applied so as to
obtain a k cluster partitioning. The graph partitioning
algorithms operate under the soft constraint paradigm, as the
SCS, and the difference lies in the way each method makes
the task to processor assignments.

Fig. 5 presents the processor utilization achieved versus
the granularity of the tasks, for the different graph partition-
ing algorithms. In this figure, we used the real workload
logs from the trace #1. As is observed, the proposed SCS
algorithm presents better utilization performance than the
scheduling schemes that use the other graph partitioning
methods examined.

6.2 Overlapping Task Scheduling: Delay Variation
versus Resource Utilization Tradeoff

In this section, we evaluate the performance of the SCS
strategy for the case where a fixed number of resources is
given and thus task overlaps are allowed. As mentioned in
Section 5.1, task arrivals in real workload traces present
bursts, with many tasks requesting overlapping time
intervals, requiring many resources to achieve task non-
overlapping (feasible scheduling under the hard con-
straints), and yielding a low utilization of the resources
used. This indicates the importance of the soft interval
scheduling concept, introduced in this paper. With soft
interval scheduling, we can increase the resources’ utiliza-
tion at the cost of having to resolve task overlaps. Thus,
instead of rejecting the overlapping tasks or assigning more
resources to them, we shift them in time as needed to obtain
a feasible assignment. As the results will indicate the
proposed SCS algorithm tends to minimize the time shifts
required to serve all the tasks and at the same time
maximize the utilization of the resources.

The evaluation of the algorithms is performed using the
time deviation measure D [see (23)] versus the resource
utilization � or the gain G [see (26)]. It is clear from (27) that
utilization � and gain G are directly related. There is a
tradeoff between the time deviation D and the utilization �;
the higher the time deviation D we can tolerate, the higher
the utilization � we can achieve. A similar statement holds
for the gain G; the higher the gain G is, the higher the time
deviation we must tolerate.

It is clear that the best scheduling algorithm is the one
that achieves minimum time deviation of the tasks for a

DOULAMIS ET AL.: RESOURCE SELECTION FOR TASKS WITH TIME REQUIREMENTS USING SPECTRAL CLUSTERING 9

Fig. 4. Utilization � versus granularity g for different percentage degree

of dependencies.

TABLE 3
Trace Information That Are Used in the Experiments

Fig. 5. Utilization � versus granularity g for different graph partitioning

methods in case of zero time deviation (trace 1). The upper bound � max
trace

on the utilization is also presented.

given utilization of the resources or operational gain G.
“Good” scheduling algorithms have D versus � curves (or
D versus G curves) that lie below the corresponding curves
of “bad” algorithms.

6.2.1 Comparisons with Graph Partitioning Algorithms

Operate under a “Soft” Constrained Framework

Comparisons of the SCS algorithm are provided initially
with scheduling schemes that are based on the previously
mentioned graph partitioning algorithms and second with
other interval scheduling strategies. The graph partitioning
algorithms operate under a “soft constraint” framework, by
selecting the resource each task should be executed on, and
then, in case of overlapping, shifting the tasks as needed to
achieve a feasible solution. The order of execution within a
resource is determined by the tasks’ start times.

Fig. 6 depicts the time deviation D versus the utilization
�, for the SCS and other soft-constraints scheduling
algorithms that use graph partitioning methods for per-
forming clustering. In the same figure, we have depicted the
time deviation D versus the operational gain G, for
granularity g ¼ 0:01. The best performance is obtained by
SCS, since for a given utilization � (or operational gain G), it
yields the minimum time deviation for the tasks, or,
equivalently, for a given time deviation that can be
tolerated, it achieves the best processor utilization (uses
the fewest processors) or the best ratio for the number of
tasks served over the number of resources used.

6.2.2 Comparisons with Hard Constrained Interval

Scheduling Algorithms

Regarding the interval scheduling methods, we first examine
the Maxima Interval Scheduling algorithm [37]. In this
algorithm, the tasks are sorted with respect to their requested
start times, and are then assigned to an available resource. In
case of conflict, the task with the latest finish time is removed
and is assigned to the subsequent scheduling period. The
second algorithm used in our comparisons is the Maxima
weight IS [37] algorithm. In this algorithm, a graph is
constructed with vertices the respective tasks and the edge-
weights indicate the id of the first nonoverlapping with the
respective vertex task [37]. Then, a max-flow algorithm is
used to solve the minimal cost flow problem. The third

scheduling algorithm considered is the Earliest Completion
Time (ECT) method, which assigns each task to the resource
that yields the corresponding minimum completion time.

Fig. 7 compares the SCS with other interval scheduling
schemes that resolve conflicts by rejecting tasks. In these
experiments, we have again used the soft-constraints
version of the Maxima IS algorithm. Again, SCS yields the
minimum delay, while ECT yields the maximum one, for a
given utilization factor achieved.

6.2.3 Comparisons with Practical Interval Scheduling

Algorithms with Soft Deadlines

A practical scheduling algorithm consists of two phases; an
algorithm is first used to determine the order in which tasks
are served for assignment to processors (“queuing order”
phase) and a policy is then used for task-to-processors
assignment (“processor assignment” phase). For the queuing
order phase, common algorithms are the Earliest Start Time
(EST), the Earliest Deadline First, the Shortest Interval (SI) or
the Least Laxity First. Regarding the processor assignment
phase, the Earliest Completion Time algorithm is usually
employed. Since in our case the tasks’ QoS are defined by
their request start and finish times, and not by deadlines, we
have assumed in the results obtained that a task’s deadline
equals task’s finish time multiplied by 2.

To operate the aforementioned practical scheduling
algorithms under a “soft” constraints model, conflicting
tasks are not rejected, but are shifted and assigned to the
resource that minimizes their completion time. In a similar
way, we modify the Maxima IS algorithm toward a soft
constrained version; tasks are sorted according to their start
times, as in the conventional IS algorithm, and, in case of
conflicts, the tasks are shifted and assigned to the resource
that minimizes their completion time.

Fig. 8 presents the comparison results against practical
scheduling algorithms operating under a soft constrained
framework. The same parameters as of the Fig. 6 have been
used for comparison. We also observe that the best
performance is achieved for the proposed SCS scheduling
algorithm. It seems that the soft version of the Maxima IS
interval scheduling scheme, where the tasks are sorting by
the respective start time and then assign using a minimum
completion time policy, outperforms the other compared
scheduling policies.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

Fig. 6. Time deviation D(A; �) for scheduling algorithms based on

different graph partitioning methods, as a function of the utilization � and

Gain (G) for the Trace 1.

Fig. 7. Time deviation D(A,�) for different algorithms A, as a function of

the utilization � and operational gain (G) , for trace #1.

Fig. 9 presents the time deviation D versus # for the SCS
algorithm and other soft deadlines algorithms, either
belonging to the category of graph partitioning (Zoltan
Algorithm) or of practical scheduling policies (Shortest
Interval combined with Earliest Completion Time).

6.2.4 The Effect of Granularity

In the following, we examine the effect of the task granularity
g on the time deviation D achieved. When SCS is compared
against interval scheduling algorithms that reject tasks that
fail to meet their requested deadlines, the performance
differences essentially come from the rejections that SCS
avoids. The SCS algorithm allows serializing multiple tasks
on the same resource within a period, while the other
algorithms serialize tasks on the same resource by assigning
only one to each period. When granularity takes values
close to one and beyond, the differences start to diminish.
However, for a constant operational gain G or recourse
computational power P (see proposition 1), the time
deviation delay increases (i.e., deterioration of end-users’
needs) with increasing granularity. As granularity tends to
one and the resource provider must ensure small task time
deviations, operational gain approaches one (see Fig. 12).
This is evident in Fig. 10, where we have plotted the time
deviation D versus the granularity g, for operational gain
G � 3. We observe that the difference between the compared
algorithms start to diminish for large granularities (espe-
cially for g > 1). However, in such cases delay significantly
increases to retain the same operational gain G (constant

ratio of resources over number of tasks). Fig. 11 presents
similar comparison results of SCS with other scheduling
algorithms, namely, Maxima IS and its soft version, and the
soft deadline policy of Zoltan.

Instead, if we use a coarse scheduling period for a given
operational gain, we achieve small task shifts and better
scheduling performance for the end users. Simultaneously,
however, utilization decreases meaning that resources are
not efficiently used (see (27) and Figs. 6 and 7). Thus, the
resource providers can select appropriate scheduling
periods that satisfy both the end users and providers’
requirements. For example, if the resource provider needs
to operate above a certain level utilization level and

DOULAMIS ET AL.: RESOURCE SELECTION FOR TASKS WITH TIME REQUIREMENTS USING SPECTRAL CLUSTERING 11

Fig. 8. Time deviation D(A, �) for different practical scheduling

algorithms operating under a “soft” deadline framework as a function

of the utilization � and operational gain (G), for the trace #1.

Fig. 9. Time deviation D(A, �) versus parameter # defined as the ratio of

the number of resources over the number of tasks (26).

Fig. 10. The effect of granularity g on the time deviation D(A,p) for

different algorithms operating under the soft-constraints model.

Fig. 11. The effect of granularity g on the time deviation D(A,p) for

different soft- and hard-constraints algorithms.

Fig. 12. The effect of the operational gainG on the time deviation D(A, p)

achieved for a given granularity g.

simultaneously giving to end users a time deviation less
than a maximum threshold, a balance between granularity
and operational gain should be sought using the results of
Figs. 6, 7, 8, 9, 10, 11, and 12.

The proposed SCS algorithm yields minimum time
deviation for a given utilization (or given operational gain
and granularity [see (27)]), compared to all the other
examined methods that use either soft or hard constraints.
Fig. 12 presents the time deviation versus granularity curve
for the SCS algorithm for different values of the operational
gain G. The conclusions drawn are similar to those observed
in Figs. 10 and 11.

6.2.5 Evaluation over Other Traces

Figs. 13 and 14 present the time deviationDversus utilization
� curve (� ¼ G:g) for two additional traces (trace 2 and
trace 3). The performance of the scheduling algorithms
depends considerably on the trace being used, but for all six
traces examined (thee traces of Table 2 plus three additional),
SCS exhibited the best performance, since it optimized the
time deviation delay for a given utilization � or equivalently
for a give operational gain G.

Finally, in Fig. 15 we present results obtained using a real-
life application scenario, where the generated tasks are 3D
image rendering processes submitted for execution in the
NEXTGRID grid infrastructure. Each 3D rendering job
consists of a series of tasks, each occupying a percentage g
(granularity) of each time interval T . There exists a maximum
duration gT that a task can request in an interval. The choice

of the time period T depends on the requested task delay
and, thus, on the type of tasks; for interactive tasks (e.g.,
mouse movement) we need lower delay than application
tasks (e.g., 3D rendering). Therefore, we have different
schedulers for different types of tasks. The interactive tasks
(e.g., mouse movement) present very small execution time,
and thus, selection of a large T would result to too low
granularity. For this type of task, we select T to be 30 ms.
Instead, 3D rending tasks present much higher execution
times, and thus, we need to select higher periods, 800 ms.

6.3 Computational Complexity

The SCS scheduling algorithm consists of two main steps:
1) the eigenvalue decomposition optimization algorithm
and 2) the clustering algorithm (k-means in our case). The
fastest implementation for the eigenvalue decomposition
problem is though the Lanczos method whose complexity is
OðMN2�Þ, where M is the number of eigenvalues that have
to be computed (equal to the number of processors), N is the
number of tasks, and � the number of iterations of the
algorithm. In our case, � takes small values (around 20-40),
compared to M and particularly N . However, for low
granularity values, M is several times smaller than N ,
making the complexity to be of order N2 in that case in
practice. The clustering step of the SCS algorithm is
implemented using the k-means method, which has com-
plexity OðN2�Þ in our case.

In Table 4, we present experiments regarding the
computational complexity performance of the SCS algo-
rithm, which is compared to that of other scheduling

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

TABLE 4
Computational Complexity for Different

Values of Granularity and Workload Traces

Fig. 13. Time deviation D(A, �) for different scheduling algorithms A, as

a function of the utilization � , for trace #2.

Fig. 14. Time deviation D(A, �) for different scheduling algorithms A, as

a function of the utilization � , for trace #3.

Fig. 15. Time deviation D(A,p) as a function of the utilization p, for 3D

rendering tasks generated in the NEXTGRID project.

methods. The experiments have been carried out for three
examined traces at different granularities values on an Intel
Core2 Duo 3.00 GHz. It is clear that as the granularity
increases the execution time of the scheduler decreases,
since fewer tasks are encountered. Although SCS presents
the worst execution time performance, the actual runtime is
not so critical even for low granularities values.

7 CONCLUSIONS

The proposed spectral clustering scheduling scheme aims at
maximizing processor utilization efficiency, while simulta-
neously minimizing the tasks’ QoS degradation. Task QoS
is specified through the requested start and finish times,
while QoS degradation is expressed through a time
deviation metric D. Resource assignment is viewed as a
normalized cuts spectral graph partitioning problem. The
algorithm defines a nonoverlapping measure between
tasks, and then uses a matrix representation, the notion of
generalized eigenvalues, and the Ky-Fan theorem to per-
form scheduling (graph partitioning) in the relaxed con-
tinuous space. The solution of the continuous relaxation is
then rounded to a discrete solution.

Experimental results and comparisons of the SCS
algorithm with other interval scheduling algorithms (such
as the traditional min-cut method, the methods of Scotch,
Metis, Zoltan, and the Maxima IS, ECT and Max Flow
Interval scheduling) were carried out. We tested the SCS
scheme under two models; the nonoverlapping model,
where we find the minimum number of processors needed
to achieve zero time deviation for all tasks (hard time
constraints case) and the model, where the tasks assigned to
a processor are allowed to overlap and have to be shifted in
time (soft time constraints case), in which case we measure
the time deviation encountered as a function of the
utilization achieved. In both cases, the SCS algorithm
outperforms the other scheduling and graph partitioning
algorithms examined. The experiments were carried out
with probabilistically generated data and real-life cases of
3D image rendering processes.

ACKNOWLEDGMENTS

The authors would like to thank the Advanced School for
Computing and Imaging (special thanks to Dr. Henri Bal)
for the Trace 1, the Grid’5000 team (special thanks to
Dr. Franck Cappello, Dr. Olivier Richard and to Nicolas
Capit) for the Trace 2, and the Susan Coghlan, Narayan
Desai and Wei Tang regarding Trace 3.

REFERENCES

[1] C. Castillo, G. Rouskas, and K. Harfoush, “On the Design of
Online Scheduling Algorithms for Advance Reservations and QoS
in Grids,” Proc. IEEE Int’l Conf. Parallel and Distributed Processing
Symp. (PDP), pp. 1-10, Mar. 2007.

[2] N. Doulamis, A. Doulamis, A. Panagakis, K. Dolkas, T. Varvarigou,
and E. Varvarigos, “A Combined Fuzzy -Neural Network Model
for Non-Linear Prediction of 3D Rendering Workload in Grid
Computing,” IEEE Trans. Systems, Man, and Cybernetics (SMC)-
Part-B, vol. 34, no. 2, pp. 1235-1247, Apr. 2004.

[3] E. Arkin and E. Silverberg, “Scheduling Tasks with Fixed Start
and End Times,” Discrete Applied Math., vol. 18, no. 1, pp. 1-8, 1987.

[4] R.W. Lucky, “Cloud Computing,” IEEE Spectrum, vol. 46, no. 5,
p. 27, May 2009.

[5] K. Singh, E. _Ipek, S.A. McKee, B.R. de Supinski, M. Schulz, and R.
Caruana, “Predicting Parallel Application Performance via Ma-
chine Learning Approaches,” Concurrency and Computation:
Practice & Experience, vol. 19, no. 17, pp. 2219-2235, Dec. 2007.

[6] M. Maheswaran, K. Krauter, and R. Buyya, “A Taxonomy and
Survey of Grid Resource Management Systems for Distributed
Computing,” Software: Practice and Experience, vol. 32, no. 2,
pp. 135-164, Feb. 2002.

[7] R.J. Al-Ali et al., “Analysis and Provision of QoS for Distributed
Grid Applications,” J. Grid Computing, vol. 2, pp. 163-182, 2004.

[8] M.S. Fineberg and O. Serlin, “Multiprogramming for Hybrid
Computation,” Proc. IFIPS Fall Joint Computer Conf., 1967.

[9] A. Stankovic et al., “Implications of Classical Scheduling Results
for Real Time Systems,” Computer, vol. 28, no. 6, pp. 16-25, June
1995.

[10] P. Kokkinos and E. Varvarigos, “A Framework for Providing
Hard Delay Guarantees and User Fairness in Grid Computing,”
Future Generation Computer Systems, vol. 25, no. 6, pp. 674-686,
2009.

[11] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of the
Maui Scheduler,” Proc. Seventh Int’l Workshop Job Scheduling
Strategies for Parallel Processing (JSSPP), pp. 87-102, 2001.

[12] B. Bode et al., “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters,” Proc. Usenix Conf., 2000.

[13] “Platform Computing Corporation,” http://www.platform.com,
2013.

[14] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,
“Heuristics for Scheduling Parameter Sweep Applications in Grid
Environments,” Proc. Ninth Heterogeneous Computing Workshop,
pp. 349-363, 2000.

[15] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal,
“Scheduling Parameter Sweep Applications on Global Grids: A
Deadline and Budget Constrained Cost-Time Optimisation Algo-
rithm,” Software: Practice and Experience, vol. 35, pp. 491-512, 2005.

[16] N. Doulamis, A. Doulamis, E. Varvarigos, and T. Varvarigou,
“Fair Scheduling Algorithms in Grids,” IEEE Trans. Parallel and
Distributed Systems, vol. 18, no. 11, pp. 1630-1648, Nov. 2007.

[17] K. Rzadca, D. Trystram, and A. Wierzbicki, “Fair Game-Theoretic
Resource Management in Dedicated Grids,” Proc. IEEE Seventh
Int’l Symp. Cluster Computing and the Grid (CCGrid), pp. 343-350,
2007.

[18] V. Martino and M. Mililotti, “Scheduling in a Grid Computing
Environment Using Genetic Algorithm,” Proc. 16th Int’l Parallel
and Distributed Processing Symp., p. 297, Apr. 2002.

[19] S. Kim and J. Weissman, “A Genetic Algorithm Based Approach
for Scheduling Decomposable Data Grid Applications,” Proc. IEEE
Int’l Conf. Parallel Processing (ICPP), pp. 406-413, Aug. 2004.

[20] H. Yin, H. Wu, and J. Zhou, “An Improved Genetic
Algorithm with Limited Iteration for Grid Scheduling,” Proc.
IEEE Int’l Conf. Grid and Cooperative Computing (GCC), pp. 221-
227, Aug. 2007.

[21] G. Ye, R. Rao, and M. Li, “A Multiobjective Resources Scheduling
Approach Based on Genetic Algorithms in Grid Environment,”
Proc. Fifth Int’l Conf. Grid and Cooperative Computing Workshops
(GCCW ’06), pp. 504-509, Oct. 2006.

[22] W. Smith, I. Foster, and V. Taylor, “Scheduling with Advanced
Reservations,” Proc. 14th Int’l Parallel and Distributed Symp.
(IPDPS), pp. 127-132, 2000.

[23] E. Varvarigos, N. Doulamis, A. Doulamis, and T. Varvarigou,
“Timed/Advance Reservation Schemes and Scheduling Algo-
rithms for QoS Resource Management in Grids,” Engineering the
Grid, pp. 355-378, Am. Scientific Publishers, 2006.

[24] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A.
Roy, “A Distributed Resource Management Architecture that
Supports Advance Reservation and Co-Allocation,” Proc. Seventh
Int’l Workshop Quality of Service (IWQOS), pp. 27-36, 1999.

[25] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail, “G-QoSM:
Grid Service Discovery Using QoS Properties,” J. Computing and
Informatics, vol. 21, no. 4, pp. 363-382, 2002.

[26] Y. Zhang et al., “Scalable Grid Application Scheduling via
Decoupled Resource Selection and Scheduling,” Proc. IEEE Conf.
Cluster Computing and the Grid, pp. 568-575, May 2006.

[27] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance Effective
and Low-Complexity Task Scheduling for Heterogeneous Com-
puting,” IEEE Trans. Parallel and Distributed Systems, vol. 2, no. 3,
pp. 260-274, Mar. 2002.

DOULAMIS ET AL.: RESOURCE SELECTION FOR TASKS WITH TIME REQUIREMENTS USING SPECTRAL CLUSTERING 13

[28] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson, “Scheduling Strategies for Mapping
Application Workflows Onto the Grid,” Proc. IEEE Symp. High
Performance Distributed Computing, pp. 125-134, 2005.

[29] R. Sakellariou and H. Zhao, “A Hybrid Heuristic for DAG
Scheduling on Heterogeneous Systems,” Proc. IEEE 18th Int’l
Parallel and Distributed Processing Symp., p. 111, 2004.

[30] W. Kubiak, B. Penz, and D. Trystram, “Scheduling Chains on
Uniform Processors with Communication Delays,” J. Scheduling,
vol. 5, no. 6, pp. 459-476, 2002.

[31] T. Yang and A. Gerasoulis, “DSC: Scheduling of Parallel Task on a
Unbounded number of Processors,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 5, pp. 951-967, Sept. 1994.

[32] Y. Zhang, C. Koelbel, and K. Kennedy, “Relative Performance
of Scheduling Algorithms in Grid Environments,” Proc. IEEE
Seventh Int’l Conf. Cluster Computing and the Grid, pp. 521-528,
May 2007.

[33] A. Kolen, J. Lenstra, C. Papadimitriou, and F. Spieksma, “Interval
Scheduling: A Survey,” Naval Research Logistics, vol. 54, no. 5,
pp. 530-543, 2007.

[34] R. Bhatia, J. Chuzhoy, A. Freund, and J. Naor, “Algorithmic
Aspects of Bandwidth Trading,” ACM Trans. Algorithms, vol. 3,
article 10, 2007.

[35] K. Nakajima and S. Hakimi, “Complexity Results for Scheduling
Tasks with Discrete Starting Times,” J. Algorithms, vol. 3, no. 4,
pp. 344-361, 1982.

[36] R. Lipton and A. Tomkins, “Online Interval Scheduling,” Proc.
Ann. ACM SIAM Symp. Discrete Algorithms, pp. 302-311, 1994.

[37] K.I. Bouzina and H. Emmons, “Interval Scheduling on Identical
Machines,” J. Global Optimization, vol. 9, pp. 379-393, 1996.

[38] M.C. Carlisle and E.L. Lloyd, “On the K-Coloring of Intervals,”
Discrete Applied Math, vol. 59, pp. 225-235, 1995.

[39] U. Faigle and W.M. Nawijn, “Note on Scheduling Intervals On-
Line,” Discrete Applied Math., vol. 58, pp. 13-17, 1995.

[40] L.G. Kroon, M. Salomon, and L. van Wassenhove, “Exact and
Approximation Algorithms for the Operational Fixed Interval
Scheduling Problem,” European J. Operational Research, vol. 82,
pp. 190-205, 1995.

[41] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs.
Academic Press, 1980.

[42] H.D. Karatza, “Periodic Task Cluster Scheduling in Distributed
Systems,” Computer System Performance Modeling in Perspective,
World Scientific, pp. 257-276, Imperial College Press, 2006.

[43] K. Gkoutioudi and H.D. Karatza, “Task Cluster Scheduling in a
Grid System,” Simulation Modelling Practice and Theory, vol. 18,
no. 9, pp. 1242-1252, Oct. 2010.

[44] D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini, and G.R. Nudd, “Local
Grid Scheduling Techniques Using Performance Prediction,” IEEE
Proc. Computers and Digital Techniques, vol. 150, no. 2, pp. 87-96,
Mar. 2003.

[45] S. Vadhiyar and J. Dongarra, “A Metascheduler for the
Grid,” Proc. Int’l Symp. High Performance Distributed Comput-
ing, 2002.

[46] G. Karypis and V. Kumar, “Multilevel K-Way Partitioning Scheme
for Irregular Graphs,” Technical Report TR 95-064, Dept. of
Computer Science, Univ. of Minnesota, 1995.

[47] J. Shi and J. Malik, “Normalized Cut and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[48] N. Doulamis, P. Kokkinos, and E. Varvarigos, “Spectral Clustering
Scheduling Techniques for Tasks with Strict QoS Requirements’,”
Proc. 14th Int’l Conf. Parallel and Distributed Systems, 2008.

[49] T.H. Cormen, C.E. Charles, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed., MIT Press and McGraw-Hill, 2001.

[50] K. Fan, “Maximum Properties and Inequalities for the Eigenvalues
of Completely Continuous Operators,” Proc. Nat’l Academy of
Sciences of USA, vol. 37, pp. 760-766, 1951.

[51] F.R. Bach and M.I. Jordan, “Learning Spectral Clustering,” Proc.
Advances in Neural Information Processing Systems (NIPS), 2004.

[52] H. Zha, C. Ding, M. Gu, X. He, and H. Simon, “Spectral Relaxation
for K-Means Clustering,” Proc. Advances in Neural Information
Processing Systems (NIPS), 2002.

[53] F. Pellegrini and J. Roman, “Scotch: A Software Package for Static
Mapping by Dual Recursive Bipartitioning of Process and
Architecture Graphs,” Proc. Int’l Conf. High-Performance Computing
and Networking (HPCN ’96), pp. 493-498, Apr. 1996.

[54] G. Karypis and V. Kumar, “METIS:A Software Package for
Partitioning Unstructured Graphs, Partitioning, Meshes, and
Computing Fill-Reducing Ordering of Sparse Matrices,” technical
report, Dept. of Computer Science, Univ. of Minnesota, Minnea-
polis, 2002.

[55] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek,
“Parallel Hypergraph Partitioning for Scientific Computing,” Proc.
IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS ’06),
2006.

[56] Z. Wu and R. Leahy, “An Optimal Graph Theoretic Approach to
Data Clustering: Theory and Its Application to Image Segmenta-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15,
no. 11, pp. 1101-1113, Nov. 1993.

Nikolaos D. Doulamis (S’96-M’00) received
the Diploma in electrical and computer engineer-
ing from the National Technical University of
Athens (NTUA) in 1995 with the highest honor
and the PhD degree from the same department
in 2001. He is currently an assistant professor at
NTUA. He received the Best Greek Student
award in the field of engineering at national level
by the Technical Chamber of Greece in 1995,
Best Graduate Thesis Award in the area of

electrical engineering, and of NTUA’s Best Young Engineer Medal. He
has served as the chairman or member of the program committee of
more than 40 international conferences. He is an author of more than
45 journals papers in the field of video transmission, content-based
image retrieval, and grid computing, and of more than 140 conference
papers. Fifteen of the journals papers have been published in the IEEE
press. He has more than 1,600 citations. He is a member of the IEEE.

Panagiotis Kokkinos received the Diploma in
computer engineering and informatics in 2003
and the MS degree in integrated software and
hardware systems in 2006, both from the
University of Patras, Greece. He is currently
working toward the PhD degree in computer
engineering and informatics at the University of
Patras. His research activities are in the areas of
ad hoc networks and grid computing.

Emmanouel (Manos) Varvarigos received the
Diploma in electrical and computer engineering
from the National Technical University of Athens
in 1988, and the MS and PhD degrees in
electrical engineering and computer science
from the Massachusetts Institute of Technology
in 1990 and 1992, respectively. He has held
faculty positions at the University of California,
Santa Barbara (1992-1998, as an associate
professor) and Delft University of Technology,

the Netherlands (1998-2000, as an associate professor). Since 2000 he
has been a professor of computer engineering and informatics at the
University of Patras, Greece, where he heads the Communication
Networks Lab. He is also the director of the Network Technologies
Sector at the Computer Technology Institute, which has a major role in
the development of network technologies in Greece. He has served as
an organizer and program committee of several international confer-
ences, primarily in the networking area. He was also a researcher at Bell
Labs, and consulted with companies in the US and in Europe. His
research activities are in the areas of protocols for high-speed networks,
network services, parallel and distributed computation, ad hoc networks,
and grid computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, 2014

