
www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 499–515
Adjusted fair scheduling and non-linear workload prediction
for QoS guarantees in grid computing

Nikolaos Doulamis a,*, Anastasios Doulamis a, Antonios Litke a, Athanasios Panagakis a,
Theodora Varvarigou a, Emmanuel Varvarigos b

a National Technical University of Athens, Department of Electrical and Computer Engineering, 9 Heroon Polytechniou str., Zografou 157 73, Greece
b Department of Computer Engineering and Informatics, University of Patras, Computer Networks Lab, 26500 Patras, Greece

Available online 9 January 2006
Abstract

In this paper, we propose an efficient non-linear task workload prediction mechanism incorporated with a fair scheduling algorithm
for task allocation and resource management in Grid computing. Workload prediction is accomplished in a Grid middleware approach
using a non-linear model expressed as a series of finite known functional components using concepts of functional analysis. The coef-
ficient of functional components are obtained using a training set of appropriate samples, the pairs of which are estimated based on
a runtime estimation model relied on a least squares approximation scheme. The advantages of the proposed non-linear task workload
prediction scheme is that (i) it is not constrained by analysis of source code (analytical methods), which is practically impossible to be
implemented in complicated real-life applications or (ii) it does not exploit the variations of the workload statistics as the statistical

approaches does. The predicted task workload is then exploited by a novel scheduling algorithm, enabling a fair Quality of Service ori-
ented resource management so that some tasks are not favored against others. The algorithm is based on estimating the adjusted fair

completion times of the tasks for task order selection and on an earliest completion time strategy for the grid resource assignment. Exper-
imental results and comparisons with traditional scheduling approaches as implemented in the framework of European Union funded
research projects GRIA and GRIDLAB grid infrastructures have revealed the outperformance of the proposed method.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Grid-enabled networking middleware; Workload prediction; Non-linear workload modeling; Fair grid scheduling; QoS requirements
1. Introduction

Today we experience an increasingly need for collabora-
tion, data sharing, and other modes of interaction that
involve multiple heterogeneous and geographically distrib-
uted resources, including supercomputers, PC’s, PDA’s,
workstations, storage systems, databases, and special pur-
pose applications with various requirements (CPU, I/O,
or memory) [1]. For this reason, new abstractions and con-
cepts should be introduced at network architecture and
middleware level to allow applications to access and share
0140-3664/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.11.013

* Corresponding author.
E-mail addresses: ndoulam@cs.ntua.gr (N. Doulamis), dora@telecom.

ntrua.gr (T. Varvarigou).
resources or services in an efficient manner. Computational

Grid is a new computing paradigm which supports the
sharing, interconnection, and use of diverse resources in
dynamic computing systems to deliver services under a
transparent, integrated, and distributed computing infra-
structure [1,2].

It is envisioned that Next Generation Networks (NGN)
will be enhanced with features that would advance the net-
works operators’ perspectives for a richer set of capabilities
regarding the management, Quality of Service (QoS) con-
trol and exploitation of their resources. This will allow
the provision of attractive stringent services reaching the
highest user expectations. Consequently, this trend aims
to design a network architecture that will be flexible, scal-
able, robust, and optimized, and will be able to support

mailto:ndoulam@cs.ntua.gr
mailto:<!?A3B2 twb=.25w?>dora@telecom.ntrua.gr
mailto:<!?A3B2 twb=.25w?>dora@telecom.ntrua.gr

500 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
also appropriate interfaces to the emerging Grid environ-
ments in an efficient, integrated, and transparent manner.
Up to now, the Grid application requirements are imple-
mented solely in the Grid middleware while the network
plays the role of a transport layer for enabling communica-
tion between two endpoints. Grid infrastructures can pro-
vide services in many areas and in a way that will utilize
features and services of the network middleware layer.
Thus, the intersection point of the Next Generation Net-
works and Grids is expected to be located in the middle-
ware since it will establish the communication between
these two, unrelated so far, layers.

The ability to provide an agreed upon QoS is important
for the success of the Grid, since, without it, users may be
reluctant to pay for services or contribute resources to
Grids. There are generally two types of QoS attributes:
the quantitative (such as network latency, CPU perfor-
mance, and storage capacity), and the qualitative (i.e., ser-
vice reliability and user satisfaction) for a Grid
infrastructure. The qualitative characteristics are important
but it is difficult to measure them objectively. In Grids the
common QoS aspects include exclusive access to resources,
number of CPUs utilized, reliability, ease of access, fair-
ness, etc. However, the most important attribute is the sat-
isfaction of a task’s deadline set by the user, since it is the
criterion of satisfying business contracts with hard time
limits [3]. To provide, however, guarantees of the negotiat-
ed QoS requirements, the Grid infrastructure should be
enhanced with appropriate and efficient scheduling and
resource management mechanisms, specifying how Grid
middleware can provide resource coordination for client
applications transparently. This need has been confirmed
by the Global Grid Forum (GGF) in the special working
group dealing with the area of scheduling and resource
management for Grid computing [4].

In this paper, we present an approach for workload pre-
diction based on extracting appropriate descriptors (fea-
tures) able to characterize a task’s computational
complexity. Therefore, our scheme is valid for specific

applications or for a class of applications of similar proper-
ties, such as the 3D image rendering algorithms or the finite
elements structuring methods which have been studied
under the framework of the GRIA project. Task workload
prediction is performed using a generalized non-linear
model between the extracted descriptor and the respective
task computational complexity. The use of simple linear
or non-linear models of specific type – exponential, loga-
rithmic – is not adequate to provide a sufficient estimate
of the workload of real-life applications since there is no
simple linear relationship, which associates the application
descriptors (extracted for representing the computational
complexity) to the actual task computational load.
Although the use of linear approaches can accurately pre-
dict the task workload for some specific applications [5],
these methods cannot be applied for the applications con-
sidered in our work since they involve among others
parameters of pre-measured executions on idle machines.
For this reason, we use the non-linear relationship among
the descriptors extracted to describe the computational
complexity of the task and the respective task workload.
Using concepts derived from functional analysis, the gener-
alized non-linear model is expanded as a series of known
finite functional components [6,7]. Then, the coefficients
of each component are estimated based on a training set of
representative samples, so that an efficient approximate
of the non-linear relationship between the extracted descrip-
tors and the respective task workload is obtained.

For the scheduler implementation, a fair policy is adopt-
ed, using a Max–Min fair sharing algorithm [8]. The sched-
uling scheme consists of two different phases; the first refers
to the order that the tasks are assigned for execution (task
queuing order phase), while the second determines the pro-
cessor on which the tasks are scheduled (processor assign-

ment phase). In the proposed fair scheduling algorithm,
which is called Adjusted Fair Task Order (AFTO), the task
queuing order is selected with respect to the task adjusted

fair completion times. The most appropriate processor that
the tasks are assigned for execution is selected using the
Earliest Completion Time (ECT) strategy, modified so that
processor capacity gaps are taken into account.

This rest of the paper is organized as follows: Section 2
provides an overview of related works for the various top-
ics that are addressed in the scope of this paper. Section 3
presents the problem formulation and the notation of the
paper. Section 4 discusses the non-linear model used for
task workload prediction, the method used for training
the model, as well as the way of constructing the training
set. In this section, we also present how the task workload
is estimated from the actually measured task runtime. The
Grid fair scheduling algorithms adopted in the proposed
Grid architecture are reported in Section 5, while Section
6 illustrates the experimental results. Finally, Section 7
concludes the paper.

2. Related work

Several toolkits and Grid middleware approaches have
been designed and developed addressing the need to reflect
and consider the QoS requirements of users that submit
their tasks in a Grid infrastructure. The most well known
toolkit for Grid computing is Globus [9]. Globus addresses
a wide range of metacomputing issues including heteroge-
neous environments and includes software services and
libraries for resource monitoring, discovery, and manage-
ment. Development, implementation, and evaluation of
mechanisms that support high throughput computing
(HTC) on a large collections of distributed computing
resources is also addressed in the framework of Condor
project [10]. The Grid version of Condor, called Condor-
G, uses Globus toolkit to manage Grid jobs [11]. While
Condor has been designed to run jobs within a single ad-
ministrative domain Globus toolkit has been designed to
run jobs across many administrative domains. Condor-G
combines the strengths of both. Condor-G introduces grid

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 501
scheduler and manager to allow full-featured queuing ser-
vices, credential manager, and fault-tolerance issues. The
Grid Application Development Software (GrADS) tool
aims at simplifying distributed heterogeneous computing
in the same way that the World Wide Web simplifies infor-
mation sharing over the Internet [12]. In the application-
level scheduling is performed by minimizing the application
execution time of a set of potentially shared resources.
Instead, in the meta-scheduling level, many applications
are considered at once to improve the overall system
performance.

Apart from the aforementioned Grid infrastructures, sev-
eral works have been reported in the literature dealing with
scheduling and resource allocation management in Grid
computing. The main goal of these approaches is to enhance
the Grid infrastructure with mechanisms able to guarantee
the negotiated QoS parameters. In [12] extension of the
scheduling algorithm of GrADS tool is discussed by (i) intro-
ducing more sophisticating clustering and data mining
schemes, (ii) reducing the computational complexity, and
(iii) providing a single-site scheduling in case of invalidation
of multi-site recourse selection. The scheduling objective of
[13] is to minimize the total completion time of the tasks.
Since minimization of task completion time in a multiproces-
sor scheduling environment is a NP-hard problem, schedul-
ing heuristics are discussed and compared with each other in
this work. Genetic algorithms methods are presented in
[14,15] for minimizing the total task completion time. The
algorithms model the scheduling process as a genetic evolu-

tion and estimate at which Grid resource a task should be
assigned for execution so that the completion time is mini-
mized. The scheme is evaluated with heuristic scheduling
strategies. Evaluation of different scheduling mechanisms
for Grid computing is also presented in [16], such as the First
Come First Serve (FCFS), the Largest Time First (LTF), the
Largest Cost First (LCF), the Largest Job First (LJF), the
Largest Machine First (LMF), the Smallest Machine First
(SMF), and Minimum Effective Execution Time (MEET).
A very interesting work on Grid scheduling implementation
steps is presented in [17].

Task workload prediction is performed using either a
statistical or an analytical model. In the statistical
approach, the application is analyzed and the application
parameters that affect the execution time are determined.
In each resource, a number of scenarios using different
parameter values are executed by the application and the
results are classified into groups which are depended on
the input parameters, and the technology and configura-
tion of the resources [18]. When a scenario of the specific
application is submitted for execution, the system classifies
the task according to the value range of the input applica-
tion specific parameters. According to this classification
and the particular resource, the system returns an estimate
of the task runtime. The main difficulty of these approaches
is that they statistically describe the computational com-
plexity of the submitted tasks not the complexity of an
individual task requesting for service.
The analytical method for runtime estimation can be
applied with much better results than the statistical one,
especially in heterogeneous computer systems, but it is
required to have analysis of the application code. The basic
procedures that affect the execution time of the application
are chosen and the execution time is measured for each dif-
ferent platform. Since the execution time of individual pro-
cesses is known in a given platform, then the estimation of
the total execution time can be directly calculated for the
specific application scenario [19,20]. However, the main
drawback of the analytical approaches is that they refer
to a known source code.

A drawback of the previously mentioned approaches is
that (i) scheduling is performed without taken into account
fair considerations and (ii) they use simple workload predic-
tion algorithms. For example, the works of [13–15] try to
minimize the total completion time by dropping over-
demanded tasks (e.g., tasks of high workload and short
deadlines), which is not a fair policy. In addition, statistical
estimation of the task workload may result in a significant
deviation of the actual task workload to the predicted one.
On the other hand, the analytical approaches assume a
known source code and they cannot provide satisfactory
results for complex real-life applications, where the gener-
ated source code is difficulty analyzed. These two aspects
are confronted in this paper by introducing (a) a fair shar-
ing scheduling policy and (b) a highly non-linear model for
workload prediction using concepts derived form function-
al analysis.

Fair scheduling schemes have been extensively studied in
the networking area, especially for scheduling packet flows
over Internet routers. Towards this direction, the General-
ized Processor Sharing scheme (GPS) has been proposed
for fair scheduling over packet switched networks [21].
The GPS algorithm can provably provide guarantees on
the delay and bandwidth of a session in a network of
switches, but cannot be implemented in practice. For this
reason, it is emulated by the Weighted Fair Queuing
(WFQ) algorithm [22], which exploits concepts of the
Max–Min Fair sharing scheme [8].

3. Problem formulation and notation

3.1. Resource parameters

Let us assume that a Grid infrastructure consists of M
resources. The performance of a Grid resource is expressed
with the resource parameter vector rj, j = 1,2, . . . ,M

rj ¼ ½rj;1; rj;2; . . . ; rj;m�T ð1Þ

the elements of which rj,k, k = 1,2, . . . ,m, indicate indepen-
dent internal processes of the jth resource that affect its
performance. Usually, three parameters (m = 3) are
sufficient for characterizing the performance of a Grid re-
source; the CPU speed, the average memory I/O and the
average disk I/O rate. These parameters usually refer as

502 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
computational parameters of the jth Grid resource [23].
Extension to additional resource parameters, such as the
communication (e.g., the Send and the Receive Communica-

tion Bandwidth both measured in Kbytes/s) and availability
parameters (e.g., the Minimum Free Memory (in MB) and
the Minimum Free Disk Space (in KB)), can straightfor-
wardly be included in the following analysis.

For the evaluation of the CPU speed, the Million Float-
ing Point Operations per second (MFLOPS/s) are used
since it is a performance measure independent of the
CPU architecture, thus allowing comparisons among dif-
ferent CPUs [23]. On the other hand, the memory perfor-
mance is evaluated through the average rates of MB/s
requiring for read and/or write on the resource memory
[24,25]. Similarly, the hard disk performance is measured
as the average read/write disk Input/Output (I/O) band-
width (defined as the average I/O Kbytes/s) [24].

The resource vector rj is estimated through a bench-
marking process that can be applied in the same way for
every heterogeneous resource platform comprising the
Grid, and provides thus a way to compare the performance
of heterogeneous resources. By using the same parameters
for every heterogeneous resource platform we can incorpo-
rate different platforms on the system and we can define a
cost of use per performance unit.

The benchmarking process is repeated at constant short
time intervals, say s, to handle the cases of time-varying
resource parameters that are dynamically change through
time. In this case, the resource parameter vector is
expressed with a time variable s, as rj (s), to indicate the
time varying behavior of the resource parameter vector.
In the following analysis, we assume a given time s to sim-
plify the notation of rj (s) as rj.

3.2. Workload parameters

Let us now assume a task, say Ti, allocated for execution
in a Grid infrastructure and let us denote as xi a vector
which describes the workload of the task Ti. Vector xi is
independent from the resource on which the task Ti is
assigned for execution. It only depends on the application
type that this task belongs to and the respective task com-
plexity. In other words and using physics terminology, the
parameters xi express the ‘‘work’’ that task Ti requires for.
Therefore, the xi is independent from the capacity of a
machine that is used for producing the ‘‘work’’ xi.

The workload parameters, expressed by vector xi, are
defined in association with the resource parameters of
Eq. (1). Since in this paper we use three computational
parameters for evaluating the performance of a Grid
resource, xi is a 3-element vector expressed as

xi ¼ ½xi;1; xi;2; xi;3�T. ð2Þ

The elements xi,k,k = 1,2,3 correspond to the CPU
instructions per task (in Million Floating Point Opera-
tions-MFLOP), the average memory I/O amount per task
(in MB) and the average disk I/O amount (in KB) per task
Ti similarly to the elements of the resource vector rj.

3.3. Task workload description parameters

Vector xi is estimated by a workload predictor module
using appropriate descriptors extracted from the task Ti.
Let us denote as si the vector containing the descriptor

parameters of task Ti:

si ¼ ½si;1; si;2; . . . ; si;n�T. ð3Þ
The elements of si,j j = 1, . . . ,n of (3) describe particular
features of the task that affect its computational load. Var-
iable n refers to the number of the descriptors used. For
example, in case we refer to tasks derived from 3D render-
ing applications, the descriptors si,j could be the image res-
olution, number of polygons, number of light sources and
so on, as it is described in [26]. It is clear that tasks of dif-
ferent applications require different descriptors to charac-
terize their workload [26]. The proposed scheme is
applied in cases where we have tasks that incorporate
descriptors, which means tasks comprising of input files
and user specified parameters which influence the computa-
tional workload of the task itself when it is to be executed.
Although it is not required to know the source code of the
application, an analysis, for engineering purposes, is man-
datory for the input files and parameters whenever a new
application is going to be integrated in the Grid. This ap-
proach is more suitable than the case of having known
source code, since it preserves on one hand the confidenti-
ality of a company’s source code, and on the other hand it
can be based only on specific patterns and specifications of
input files while using the user’s input in a transparent way.

3.4. Task runtime

Let us now denote as tðrunÞ
i;j the runtime of task Ti on the

jth Grid resource. Let us also assume, for simplicity, that
there is no overlap between the various internal processes
(i.e., the CPU, the memory, and the hard disk) that affect
the task execution. A similar approach of independent
computational parameters is also adopted in [23]. Then,
the total execution time of a task equals the sum of individ-
ual execution times of each of the specific internal process.
Since in our case, we have taken into account three differ-
ent processes for evaluating the performance of a Grid
resource, i.e., the CPU, the memory and the hard disk
speed, the total runtime for executing task Ti on the jth
resource is given by

tðrunÞ
i;j ¼

Xm

p¼1

tðpÞi;j ; ð4Þ

where tðpÞi;j , p = 1,2,3 refers to the individual execution times
of the three different internal processes of the task.

The individual execution times tðpÞi;j are estimated through
the resource parameters rj,p of the j resource along with the

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 503
respective workload of the task xi,p. In particular, we have
that

tðP Þi;j ¼
xi;p

rj;p
. ð5Þ

A block diagram of the above mentioned architecture
comprising the Grid middleware approach is presented in
Fig. 1. As is observed, the architecture consists of the five
modules. The Task Load Description, which is responsible
for estimating the descriptor parameters si, the Grid

Resource Description, which is used for benchmarking the
Grid resources to obtain their capacities, the Run-Time

Estimation responsible for estimating the task run time
on a resource, the Workload Prediction used for forecasting
task workload using the descriptor vector si and the Grid

Scheduler, which is used for selecting the task order and
the respective processor that a task is assigned for
execution.

4. Task workload prediction

To estimate the task workload xi, a predictor is required,
able to forecast the task actual load based on a set of sev-
eral descriptors, appropriate extracted to represent the task
computational complexity. This approach assumes that the
type of the application is known instead of the task code

itself as it happens in the analytical schemes. Let us recall
that for each task Ti several descriptors are extracted to
represent the task computational complexity and included
in a feature vector, say si. An example of the way that
the descriptors are extracted in case of 3D image rendering
tasks is presented in Section 6. The exact type and number
of the elements of vector si depends on the application that
the tasks derive from. In the most general case, the extract-
ed descriptors are related to the actual task workload
through a non-linear relationship as

xi ¼ ½xi;1xi;2xi;3�T ¼ ½g1ðsiÞg2ðsiÞg3ðsiÞ�T ¼ gðsiÞ; ð6Þ
where g(Æ) = [g1(Æ) g2(Æ) g3(Æ)]T is a vector-valued function,
the elements of which gi(Æ), i = 1,2,3 express the non-linear
relationships between the input descriptors and the respec-
Task Load
Description

Workload
Prediction

Runtime
Estimation

iT
is ix~

(
,
run
jit

ix̂

Task Load
Characterization

jr

Fig. 1. The proposed middleware approach f
tive three computational parameters that assemble the task
workload [see Eq. (2)].

The main difficulty in implementing Eq. (6) is that g(Æ) is
actually unknown. Using concepts derived from functional
analysis, we can model the unknown function g(Æ) as a
parametric relationship of finite known functional compo-
nents, within any degree of accuracy [6], that is

gmðsiÞ �
XL

l¼1

vðmÞl � U
ðmÞ
l

XP

k¼1

wðmÞk;l ðsi;kÞ
 !

; 8m ¼ 1; 2; 3; ð7Þ

where vðmÞl and wðmÞk;l refer to the model parameters of the un-
known functional elements, gm(Æ), m = 1,2,3, while the
Um

l ð�Þ to the functional components. Eq. (7) indicates that
the functions gm(Æ) is expanded as a linear relation of the
non-linear functional components UðmÞl ð�Þ, whose inputs
are linear relations of descriptor parameters si. In Eq. (7),
variable L expresses the approximation order of functions
gm(Æ). It is clear that the approximation precision increases,
as the order L increases, at the expense of an increase in the
number of parameters [6].

The most familiar class of functional components UðmÞl ð�Þ
is the sigmoid functions, which are equal to

UðmÞl ðxÞ ¼ 1=ð1� expð�a � xÞÞ; ð8Þ
where a is a constant which regulates the curve steepness.
Thus, P · L parameters are required to approximate func-
tions gm(Æ).

4.1. Training set construction

Estimation of the model parameters vðmÞl and wðmÞk;l can be
obtained using a training set of representative samples. In
particular, let us denote as S a set, which contains selected
representative samples that are used to model the non-
linear input-output relationship g(Æ). The set S has the form of

S ¼ f. . . ; ðsi; xiÞ; . . .g; ð9Þ
where the pairs (si, xi) contain the description of a task
complexity along with the respective workload for the
ith task. To provide a robust estimation of the model
)

Grid
Resource

Description

Scheduling
Resource Allocation

Grid Resources

jr
Task scheduling

Grid Scheduler

or enhancing Grid enabled architectures.

504 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
parameters vðmÞl and wðmÞk;l , several representative samples are
selected and included in the training set S.

The main difficulty in constructing the training set S, i.e.,
the samples (si,xi), is the reliable estimation of the actual task
workload as expressed by the vector xi. This is due to the fact
that what we can measure is the actual task execution time on
a particular resource, i.e., tðrunÞ

i;j , along with the specific
resource capacity, rj instead of vector xi. Thus, vector xi

can be estimated using the resource vectors rj and the task
runtime tðrunÞ

i;j on several resources as described in following.

4.2. Workload estimation

Using Eqs. (4) and (5), we can express the total execu-
tion time tðrunÞ

i;j of the task Ti on the jth resource as

tðrunÞ
i;j ¼

X3

p¼1

xi;p

rj;p
¼ xi.=rj; ð10Þ

where the symbol ./ is the division of the elements of vector
xi = [xi,1 xi,2 xi,3]T with the respective elements of the vector
rj = [rj,1 rj,2 rj,3]T (i.e., element by element division).

To provide a reliable estimation of vector xi, we execute
a given task Ti over all M available Grid resources and cal-
culate the respective task runtimes, i.e., the tðrunÞ

i;j , for all
j = 1,2, . . . ,M. Since, vector xi depends only on the task
Ti and not on the resource on which the task is assigned
for execution, the optimal estimate of vector xi, say x̂i, is
given by minimizing the following error (least squares)

x̂i ¼ arg min E
xi2R3

ð11Þ

with E ¼
XM

j¼1

ðxi � tðrunÞ
i;j � rjÞT � ðxi � tðrunÞ

i;j � rjÞ.

The optimal estimate x̂i which minimizes Eq. (11) is giv-
en by differentiating Eq. (11) with respect to vector xi and
then setting the derivatives equal to zero, i.e., dE

dxi
¼ 0. In

this case, the optimal estimate x̂i is given as

x̂i ¼
1

M
�
XM

j¼1

tðrunÞ
i;j � rj. ð12aÞ

From (12a), we can measure the estimated task runtime
as

t̂
ðrunÞ
i;j ¼ x̂i.=rj. ð12bÞ

Having estimated in an optimal way the task workload,
we can construct the samples of the training set used to
approximate the parametric weights (i.e., the coefficients)
of Eq. (7). Thus, the actual set S is constructed by pairs
of the form ðsi; x̂iÞ, where the estimated task workload x̂i

has been optimally obtained using Eq. (12a).

4.3. Non-linear model training

Using the training set S, the parameters vðmÞl and wðmÞk;l of
Eq. (7) are estimated. In our case, a second order method
has been used, for training based on the Marquardt–Leven-
berg algorithm [27]. This method has been selected due to
its efficiency and fast convergence, since it was designed
to approach second order training speed without having
to compute the Hessian matrix. Other types of training
algorithms can be adopted for estimating the parameters
vðmÞl and wðmÞk;l , such as the ones presented in [28].

To increase the generalization performance of the work-
load predictor, i.e., its prediction performance for data out-
side the training set, the cross validation method is adopted
during the training. According to this technique, the train-
ing data are divided into two subsets; the one used for
training and the one used for evaluating the training per-
formance (validation set). The error on the validation set
is monitored during the training phase. Normally, this
error decreases as the number of training iterations increas-
es, as the error in the training set does. However, when data
overfitting is noticed, the error on the validation set begins
to increase and the training phase is terminated. This point
is called early stopping and defines the most appropriate
time instance that the training phase should be completed
[29].

4.4. Task runtime prediction

The aforementioned non-linear model is used to predict
the workload (and thus the runtime) of a task that is
requesting for service to a processor. Then, the predicted
information is used by the Grid scheduler so as to assign
the tasks to the available processors.

For this reason, initially description values are extracted
from a task Ti and included in the vector si. Then, using the
model presented in Eq. (7), (the model parameters have
been already optimally estimated using the samples of the
training set S and the training algorithm), a prediction of
the task workload is obtained as

~xi ¼
XL

l¼1

vðmÞl � U
ðmÞ
l

XP

k¼1

wðmÞk;l ðsi;kÞ
 !

; ð13Þ

where as ~xi, we denote the predicted workload of the task
Ti.

Then, the respective task runtime is provided by the fol-
lowing equation:

~tðrunÞ
i;j ¼ ~xi.=rj; ð14Þ

where ~tðrunÞ
i;j corresponds to the predicted runtime for the

task Ti on the jth Grid resource.

5. Fair grid scheduling algorithms

Let us assume that at a given time, N tasks are to be
scheduled with a predicted workload ~xi, i = 1,2, . . ., N.
Let us also assume that each task is characterized by a
deadline Di, which is the desirable time that the task should
complete its execution. Let us also denote as di,j the earliest
time at which it is feasible for the task Ti to start execution

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 505
on processor j. The di,j is calculated from the communica-
tion delays between the user and processor j (e.g., the time
that elapses between a decision is made by the resource
manager to assign task Ti to processor j, and the arrival
of all files necessary to run task Ti to processor j) and from
the time that processor j is ready for executing the task Ti

(e.g., the processor may execute other tasks). Then, the
demanded computation rate Xi of the task Ti is defined as
follows:

X i ¼
k~xik

Di � di
; ð15Þ

where di is the weighted average of di,j over all processors

di ¼
PM

j¼1dij � krjkPM
j¼1krjk

. ð16Þ

In the following analysis, we assume that the tasks are
non-preemptable and non-interruptible, i.e., when they start
execution on a machine they run continuously on that
machine until completion. We also assume that time-shar-
ing is not available and a task served on a processor
occupies 100% of the processor capacity. The tasks do
not have any inter-dependencies and so they can not block
the execution of each other. For the purpose of our sched-
uling algorithms two different phases are considered; In the
first phase, we determine the order in which the tasks are
assigned for execution (the ‘‘queuing order’’ phase) while
in the second phase, we determine the processor on which
each task is scheduled (the ‘‘processor assignment’’ phase).

5.1. Task queuing order selection

The most widely used algorithm for task order selection
is the Earliest Deadline First (EDF) method, also known as
the deadline driven rule [30]. This method dictates that at
any point the system must assign the highest priority to
the task with the most imminent deadline. The concept
behind the EDF scheme is that it is preferable to serve first
the most urgent tasks (i.e., the task with the earliest dead-
line) and then serve the remaining tasks according to their
urgency. However, this queuing order selection algorithm
does not make any attempt to handle the tasks requesting
for service in a fair way. For example, tasks with relative
urgency may be favored against the remaining tasks,
regardless of the respective workload. In addition, using
an EDF scheduling scheme, there is no motivation for a
user to specify a honest deadline, since tasks of late dead-
lines are given low priority. To overcome the aforemen-
tioned difficulties, an alternative approach is presented in
this section, by handling tasks requesting for service with
respect to their fair completion times.

5.1.1. Fair rates estimation

Based on the demanded rates of the tasks, the task fair
rates are estimated using the Max–Min fair sharing method
[8]. Intuitively, in the non-weighted max–min fair sharing
scheme, all users are given an equal share of the total
resources, unless some of them do not need their whole
share, in which case unused resources are divided equally
among the remaining ‘‘bigger’’ users in a recursive way.
The fair sharing is accomplished by the total offered pro-
cessor capacity as measured by

C ¼
XM

j¼1

krjk; ð17Þ

where we recall that rj is the resource vector of the jth Grid
resource.

In the weighted modification, a weight, say wi, is
assigned for each task, which defines the priority of the
ith task. More specifically, the fair computational task
rates, say fi, are estimated using the following equations:

fiðnÞ ¼
X i if X i < wi �

Pn
k¼0OðkÞ;

wi �
Pn

k¼0OðkÞ if X i P wi �
Pn

k¼0OðkÞ;

�
n P 0

ð18Þ

where

OðnÞ ¼ C �
PN

i¼1fiðn� 1Þ
~NðnÞ

; n P 1 ð19Þ

and

Oð0Þ ¼ C=~N ; with ~N ¼
XN

i¼1

wi; ð20Þ

where fi (n) is the fair rates of the ith task at the nth itera-
tion of the algorithm, while Ñ (n) is the sum of the weights
of the tasks whose assigned fair rates are smaller than their
demanded computation rates at the beginning of the nth
iteration of the algorithm, that is:

~NðnÞ ¼
X

i

wi : for all i : X i > fiðn� 1Þ and ~Nð0Þ

¼ ~N . ð21Þ

The process is terminated at an iteration no at which either
O (no) = 0 or card {Ñ (no)} = 0. Therefore, the estimated
task fair rates are given by

fi ¼ fiðg0Þ: ð22Þ
Example: To clarify the way of estimating the fair rates of
the tasks, a simple example is presented in the following. In
particular, let us assume four tasks of demanded rates 10,
8, 5, and 15, respectively. The weights of the first and third
tasks equal 1, while the weights of the second and fourth
tasks equal 2. The overall processor capacity in this exam-
ple is assumed to be 30. Then, initially the total processor
capacity is divided by 6 (i.e., the sum of the task weights)
and thus a share unit equal to 5 (30/6) is assigned. For
the first and second tasks, one share unit (30/6) is assigned
(since their weights are 1) while for the second and four two
share units (60/6) are assigned (since their weights are 2). In
the initial assignment, the second and third task are totally
satisfied with a remaining processor rate of 2, which is

506 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
equally shared to the first and fourth tasks whose the
demanded rates are not satisfied at the initial stage of the
algorithm. In particular, the remaining capacity (i.e.,
the 2) is divided by 3 (the sum of the weights of first and
fourth tasks) and a share unit, (equals 2/3) is calculated,
which is assigned to the tasks (1 share unit to the first task
and 2 share units to the fourth task). Table 1 presents the
estimated fair rates of the tasks along with the respective
demanded rates and the weights.

5.1.2. Adjusted fair rates estimation

When certain tasks become inactive (e.g., because they
complete execution), more capacity becomes available to
be shared among the active tasks, and therefore the fair
rates of the active tasks should increase. In addition, when
new tasks become active (e.g., because of new arrivals), the
fair rates of existing tasks should decrease. In other words,
the fair computational rate of a task is not really a constant
fi, as assumed before, but it is actually a function of time,
which increases when tasks complete execution, and
decreases when new tasks arrive, resulting in the adjusted

fair rates.
The adjusted fair rates are estimated by re-calculating

the task rates each time a task become active/inactive. This
is performed using the max-min fair sharing scheme only

for the active tasks. Thus, the rate of the ith task is a func-
tion of time, i.e., f a

i ðtÞ. We call this rate, adjusted fair rate.
This approach results in a scheduling scheme that is fairer
than the other approaches.

5.1.3. Fair completion times estimation

Let us denote as ta
i the adjusted fair completion times,

which are estimated from the adjusted fair task rates. The
adjusted fair completion times are estimated with the fol-
lowing algorithm.

Initially, we assume that the rates f a
i ðtÞ of all tasks have

been normalized so that the minimum task rate equals 1.
Then, we introduce a variable called the round number,
which defines the number of rounds of service that has been
completed (e.g., the workload) at a give time. A non-
integer round number represents a partial round of service.
The round number depends on the rates of the active tasks
at a given time. In particular, the round number increases
with a rate equal to the sum of the rates over all the active
tasks, i.e., with a slope equal to 1=

P
if

a
i ðtÞ. Thus, the rate

that the round number increases, changes each time the
state of the active tasks changes, i.e., when a new arrival
or a task completion takes place. Therefore, each time
Table 1
An example of the Max–Min fair sharing algorithm if the overall processor c

Demanded rates Workload Weights First weighted sharing

10 10 1 5
8 8 2 10
5 5 1 5

15 20 2 10
the number of active tasks change, a recalculation of the
round number has to be performed.

Based on the round number, we define the finish number

Fi (t) of task Ti at time t as

F iðtÞ ¼ RðsÞ þ ~xi=f a
i ðtÞ; ð23Þ

where s is the last time a change in the number of active
tasks occurred (and therefore the last time that the round
number was re-calculated), and R (s) is the round number
at time s. Fi (t) should be re calculated each time new arriv-
als or task completions take place. Note that Fi (t) is not the
time that task Ti will complete its execution. It is only a ser-
vice tag that we will use to select the order in which the
tasks will be assigned to processors. The adjusted fair com-
pletion times ta

i can be computed as the time at which the
round number reaches the estimated finish number of the
respective task. Thus,

ta
i : Rðta

i Þ ¼ F iðta
i Þ. ð24Þ

The task adjusted fair completion times determine the
order in which the tasks are considered for execution to
the Grid resources: the task with the earliest adjusted fair
completion time is assigned first, followed by the second
earliest, and so on.

Example: Let us concentrate on the four tasks of Table 1
and let us assume that the task workload are 10, 8, 5, and 20,
respectively. The initial task fair rates are the ones presented
in Table 1 (i.e., 5.66, 8.5, and 10.66). At time t = 1, the tasks 2
and 3 complete their execution. Thus, they become inactive.
For this reason, a new fair allocation of the total processor
capacity takes place for the tasks, 1 and 4. In particular,
the total processor capacity of 30 units is shared into 3 parts
(one for the task 1 of weight 1 and 2 for the task 4 of weight 2).
Thus, the adjusted fair rates of the tasks 1 and 4 are estimated
which equal to the demanded rates (10 and 15, respectively).
At time t = 1.43, the task 1 finishes its execution since the
task workload equals 10. Finally, at t = 1.62 the task 4 finish-
es its execution. The adjusted fair rates of the four tasks ver-
sus time are presented in Fig. 2 along with their respective
adjusted completion times. Therefore, the task queuing
order is selected as, task 3 first, following by task 2, following
by task 1 and then by task 4.

5.2. Processor assignment selection

The processor at which a given task is assigned for exe-
cution is estimated through the Earliest Completion Time
(ECT) scheme as described in the following.
apacity is 30

rates Fair rates Adjusted completion times Task order

5.66 1.43 3
8 1 2
5 1 1

10.66 1.62 4

0 0.5 1 1.5 2
0

5

10

15

20

Time

A
dj

us
te

d
Fa

ir
 R

at
es

 Task 1
 Task 2
 Task 3
 Task 4

Fig. 2. The adjusted fair for the tasks of Table 1.

T1

d11

T2

d22

T3

d31

T4

d 42

T5

T6

d52

d61

Time

U
ti

li
za

ti
on

Time

t=0

Fig. 3. An example of the Earliest Completion Time (ECT) algorithm for
processor selection in case that the task starting time is estimated as the
processor released time.

T1

d
11

T2

d22

T3

d31

T4

d 42

T5 T6

d52d62 Time

Time

U
ti

li
za

ti
on

t=0

Fig. 4. An example of the ECT algorithm for processor selection by
exploiting processor capacity gaps.

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 507
Let us assume that si,j is the time that task Ti starts its
execution on processor j. Then, the estimated completion
time of the ith task is given as si;j þ~tðrunÞ

i;j , where we recall
that ~tðrunÞ

i;j is the predicted runtime for the task Ti on the
jth Grid resource. The runtime ~tðrunÞ

i;j is calculated through
the Eq. (14). Then, the ECT method selects, among the
M available processors, the one that yields the minimum
estimated completion time, i.e., minimizes the following
quantity,

ĵ ¼ arg min
j2f1;...;Mg

fsi;j þ~tðrunÞ
i;j g. ð25Þ

The starting time si,j has to be larger than the ready time di,j

of the task Ti on processor j (i.e., si,j P di,j), which in turn
depends on the ready time at which the respective proces-
sor becomes available for executing the task and the com-
munication delay of the task.

One approach is to estimate si,j as the processor release

time, that is, the time at which all tasks that have already
been scheduled on this processor finish their execution.
Fig. 3 illustrates a scheduling scenario in which (a) the task

queuing order is selected using the EDF algorithm (b) the
processor assignment is selected using the ECT approach
and (c) the task starting time si,j is chosen as the processor
release time.

In this figure, we assume that all tasks Ti, i = 1,2, . . . , 6
request service at time t = 0, the processors have equal
computational capacity, and both processors are initially
idle. We also assume that D1 < D2 < � � � < D6 and di1 = di2.
Initially, the task T1 of the earliest deadline D1 is assigned
for execution, and processor 1 is chosen (randomly in this
case, since there is tie). Then, task T2 is assigned for execu-
tion on processor 2, since this yields the earliest completion
time. In a similar way, we assign the remaining tasks.

Setting the task starting time si,j as the processor release
time makes si,j easy to record and independent of the task
that is about to be scheduled, but it has the drawback that
gaps in the utilization of a processor may be created (see
the gap between the tasks T1 and T3 in Fig. 3), resulting
in a waste of the processor capacity and thus in a deterio-
ration of the scheduling performance. To overcome this
problem, an alternative approach is adopted, which esti-
mates the processor available time more precisely. Particu-
larly, the capacity gaps are examined and in case that a
selected task can be served within a capacity gap it is
assigned to this time interval. Among all candidates time
intervals the one, which provides the earliest completion
time, is selected. Fig. 4 presents how the scheduling of
Fig. 3 is improved by exploiting the capacity gaps. In this
case, the completion time of tasks T5 and T6 is shorter than
that obtained in Fig. 3. In particular, the capacity of pro-
cessor 2 is better exploited, since the capacity gaps are sig-
nificantly reduced. Also, although the capacity gap of
processor 1 is not reduced, its processing availability
increases, leaving more capacity for scheduling future
tasks.

6. Experimental results

6.1. Grid infrastructure

The aforementioned described architecture has been
implemented in the framework of the GRIA (‘‘Grid

508 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
Resources for Industrial Applications’’) and GRIDLAB
(‘‘A Grid Application Toolkit and Testbed’’) European
Union funded projects [31,32]. Fig. 5 presents the archi-
tecture implemented in the framework of these projects.
The architecture is discriminated into two main parts;
the client side architecture (Fig. 5(a)) and the server side
architecture (Fig. 5(b)). The main module of the client
side is the task load characterization, the sub-modules
of which are presented in Fig. 1. On the other hand,
the Grid scheduler constitutes the heart of the server side
architecture.

The main parts of the adopted Grid architecture at the
client side are summarized as follows.

6.1.1. Grid application

This module provides an interface required for interact-
ing the user with the Grid infrastructure. The interface is
designed to control a collection of Grid services for the user
desktop, i.e., the deadlines of the submitted tasks, the task
priori-ties and so on.

6.1.2. Workflow enactor
This is an intermediate module with interacts with all

modules at the client side. The workflow enactor is respon-
sible for activating each time an appropriate module at the
client side.

6.1.3. Task load characterization

This module is responsible for modeling and predicting
the task workload characteristics. This information is then
provided to the architecture of the server side along with
the associated task deadlines so that an appropriate sched-
uling scheme is accomplished. The main sub-modules of
task load characterization are presented in Fig. 1 (the task
load description, workload prediction, and runtime
estimation).

6.1.4. Grid access authorization
The authorization module checks whether the user is

authorized to access the Grid resources and on which
terms.
Grid Application
(User Interface)

Workload
Enactor

Grid Access
Authorization

Task Load Characterization

Grid Service
Proxy

In
te

rg
ity

 a
nd

A
ut

he
nt

ic
at

io
n

D
at

a
Si

gn
at

ur
e

D
at

a
E

nc
ry

pt
io

n
D

at
a

D
ec

ry
pt

io
n

a

Fig. 5. The adopted Grid infrastructure. (
6.1.5. Grid service proxy

This module instantiated by the workflow enactor to
handle invocation of remote Grid servers, either in the
application or in the negotiation steps.

On the contrary, the main parts of the Grid infrastruc-
ture at the server side are the following.

6.1.6. Grid scheduler

The scheduler is the heart of the server architecture and
determines when (task queuing order) and at which proces-
sor (processor assignment) the submitted tasks should be
executed so that the demanded QoS parameters are satis-
fied as much as possible. The scheduler uses information
obtained by the task load characterization module and
the current resource availability.

6.1.7. Negotiation service

In case that the demanded QoS parameters of the sub-
mitted tasks can not be satisfied (i.e., the task deadlines
are violated), the negotiation service is activated to inform
the users for the violation and ask them whether they are
willing to submit the task with the supported by the Grid
infrastructure QoS parameters.

6.1.8. Resource manager

This module is responsible for sending the submitted
tasks for execution in the Grid resources.

The workload predictor module has been integrated in
the client side of the architecture and has been directly
interfaced with the client GUI. The user of the application,
after initiating an authorization process based on Public
Key Infrastructure (PKI) technology, selects the files that
comprise the job and that will be submitted for execution.
The job will be assigned on a single processor for execu-
tion, based on the service profile specified by the user.
The service profile refers to the specification of the quality
of the execution which reflects the deadline of the results
submission and the cost that will be allocated for the given
job. While the job is executed, the user can suspend the ses-
sion and resume it later on. When the job has terminated its
execution, the results will be prompted to the user as a link
D
ata Signature

D
ata E

ncryption

Intergity and
A

uthentication

D
ata D

ecryption

Resource
Manager

Negotiation
Service

Authorization

Queuing Order
Selection

Processor
Assignment

Selection

Grid Scheduler

Capacity
Estimation

b

a) The client side. (b) The server side.

Table 3
Resource parameters values for the 10 representative resources comprising
the examined Grid infrastructure

Grid resource id Resource parameters

MFLOPs (rj,1) Mbytes/s (rj,2) Kbytes/s (rj,3)

1 941 445 10780
2 2103 1827 23119
3 400 116 5286
4 1982 1014 21443
5 2341 1974 27964
6 806 920 13135
7 466 122 9251
8 987 457 15463
9 627 339 11268

10 1612 468 9984

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 509
where he can download them from, making use of his X.509
certificate and username/password he has been assigned
explicitly for this purpose. The communication between
the various endpoints is made under the framework of
Web services through the Simple Object Access Protocol
(SOAP). The Application Programming Interface (API)
for the respective functionality of workload prediction and
estimation of the resources capacity and the runtime of a
given task on a selected resource is presented in Table 2.

6.2. Grid resource description

In order to estimate the task workload xi, the resource
vector rj should be available. Vector rj is estimated through
a benchmarking process, which is applied to any resource
of the Grid. The benchmarking process is conducted to
be platform and application independent.

In our experiments, three different C++ programs were
developed and integrated in the server side part for provid-
ing a reliable estimation of the resource vector. The mea-
sured quantities of the resource vector reflect the
performance capability of a Grid resource. As CPU speed
measurement, we use the MFLOPs which are the amount
of floating point division operations that the CPU can pro-
cess per second. As I/O memory bandwidth measurements
we use the average of input and output MB/s ratios with
50 packets of 1024 KB each, for write and read processes,
respectively. Finally, as I/O disk storage bandwidth mea-
surement, we take the average of input and output KB/s
ratios with 50 packets of 512 KB each, for write and read
processes, respectively. The design of the three C++ pro-
grams was performed so that they can be compiled for both
Linux and Microsoft Windows platforms, enabling the
incorporation of heterogeneous operational systems in
the proposed Grid architecture.

In the benchmarking method, adopted in this study,
agent technology has been included. In particular, an agent
is assigned for each resource in the Grid which triggers the
benchmarking procedure on a regular basis by executing a
script containing the three C++ classes. Then, the outcome
comprising the three resource parameters values is stored in
an ASCII file of pre-determined format. This file is parsed
by a Java class deployed as Web Service on the server side
and the values as passed to the scheduler for the estimation
of the runtime in each resource, respectively.

Table 3 presents the benchmarking results for 10 select-
ed representative resources of the proposed Grid
infrastructure.
Table 2
The API in Java for the workload prediction module and the resource capaci

double[] inputFileParse (String filepath, double[] inparams)
double[] restoreWorkloadPredictor(String workpredID, double[] inputArray)
double[] capacityEstimator()
double runtimeEstimator (double[] workLoad , double[] resourceCapacity)
6.3. Workload prediction results

In order to evaluate the performance of the proposed
workload prediction model, tasks derived from a real-life
commercial application are considered. In our experiments
the tasks stem from 3D image rendering, which is an inter-
esting commercial application with a wide impact in many
fields ranging from simulation and design to education,
entertainment and advertisement. 3D image rendering
refers as a process of creating computer generated photo-re-
alistic imaging of complex scenes from 3D synthetic geo-
metrical primitives [33]. A fundamental difficulty in
achieving total visual realism of synthetic images is the com-
plexity of the real world (such as reflections, refractions,
surface texture, shadows, light conditions, and object irreg-
ularities) which results in high demands of processing power
and memory size. For this reason, 3D rendering can be
solved more feasibly and in a reasonably time and cost using
a Grid infrastructure. In our case, the 3D image rendering
tasks have been developed using the Blue Moon Rendering
Tool (BMRT) version 2.6, which is a set of rendering pro-
grams and libraries adhering to the RenderMan(TM) stan-
dard as set forth by Pixar.

To implement, however, the workload prediction mod-
el, a training set of representative 3D rendering tasks
should be constructed. The set contains pairs of appro-
priate features extracted from each task to describe the
computational complexity along with the respective task
workload. The task workload is estimated through the
runtime estimation model as described in the following
section. In addition, in Section 6.3.2 we present the fea-
tures extracted for each task to describe the task compu-
tational complexity.
ty and runtime estimators

510 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
6.3.1. Runtime estimation model results

Initially, the grid resources are divided into two indepen-
dent parts. The training resource set, which is responsible
for the estimation of the task workload and the evaluation

resource set, which is used for evaluating the task workload
estimation performance.

A set of different 3D image rendering tasks has been
constructed and assigned for execution in all resources of
the training resource set. Then, the actual runtime tðrunÞ

i;j ,
for all the examined tasks and for all training Grid resourc-
es is estimated. Using the actual runtime tðrunÞ

i;j and the
resource vectors rj, as they are obtained through the bench-
marking process, the estimates x̂i of all tasks are computed
[see Eq. (12a)].

To test the estimation accuracy of the task workload,
the Grid resources of the evaluation set are used. More spe-
cifically, the examined 3D rendering tasks are assigned for
execution in all resources of the evaluation set and then the
actual runtime tðrunÞ

i;j of these tasks is measured. The actual
runtime of the tasks is compared with the estimated one,
t̂
ðrunÞ
i;j as obtained using Eq. (12b), i.e., the estimated task

workload and the respective Grid resource vector.
Fig. 6 illustrates the workload estimation accuracy. In

particular, the solid line of Fig. 6 refers to the actual run-
time (i.e., the tðrunÞ

i;j) while the dotted line refers to the esti-
mated one (i.e., the t̂

ðrunÞ
i;j) as have been measured on two

Grid resources of the evaluation set. The results have been
derived from 32 representative 3D rendering tasks among
200 examined ones. In Fig. 6, the y-axis is presented in log-
arithmic form. As can be seen, the runtime estimation mod-
el has produced runtime values very close to the actual ones
for all the examined tasks, regardless of the actual time
required for their execution. This means that the model
behaves well both for tasks of low and high computational
complexity and thus it provides an efficient estimation of
the task workload. The square error defined as
1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

Task Number

T
as

k
R

u
n

ti
m

e
(s

ec
)

3D Rendering
Actual Runtime
3D Rendering
Estimated Runtime

a b

Fig. 6. The actual ðtðrunÞ
i;j Þ and the estimated ð̂tðrunÞ

i;j Þ runtimes for 32 3D image r
method of Section 3.2. (a) The first resource. (b) The second resource.
Er ¼
tðrunÞ
i;j � t̂

ðrunÞ
i;j

��� ���
tðrunÞ
i;j

ð26Þ

over the two examined Grid resources of the evaluation set
are shown in Fig. 7. The two selected resources are the first
two of Table 3, and have been selected so as to show differ-
ent potentialities in terms of MFLOPS/s, disk I/O band-
width and memory I/O bandwidth. What we can see
from these figures is that the square error for the workload
prediction of the chosen tasks, can be different when exe-
cuting the same tasks on different resource, but the non-
linear prediction module once trained, provides accurate
results. It should be also mentioned that in this figure,
the error has been plotted versus the task runtime and
not the task number. As can be seen, in the worst case
the error is lower than 14%, while the majority of the run-
time estimation error ranges between 4% and 12%, with an
average square error of about 7.5%. Fig. 8 presents the
Q–Q (Quantiles–Quantiles) plots of the actual and the pre-
dicted task runtimes over the two examined Grid resources.
In this figure, the solid line corresponds to perfect fit. The
advantage of the Q–Q plots is that they show all prediction
differences with the same accuracy, regardless of the value
of actual task runtime. It can be seen that the plotted data
are close to the line of perfect fit, meaning that the pro-
posed runtime model is accurate.

6.3.2. Feature extraction results

In our case, the features used to describe the computa-
tional complexity of a 3D rendering task are provided by
parsing a RenderMan Interface Bytestream (RIB) format-
ted file, which provides a general structure for describing a
synthetic world. RIB format includes information about
the object geometric primitives (such as cylinder, cone,
and sphere), object transformation, object material and
texture, number of light sources, rendering algorithm
1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

Task Number

T
as

k
R

u
n

ti
m

e
(s

ec
)

3D Rendering
Actual Runtime
3D Rendering
Estimated Runtime

endering tasks into two Grid resources as obtained using the least square

Fig. 7. The error Er between the actual and the estimated runtime for the 32 3D rendering tasks of Fig. 6. (a) For first resource, (b) for the second resource.

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

Actual Runtime

E
st

im
at

ed
 R

un
tim

e

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

Actual Runtime

E
st

im
at

ed
 R

un
tim

e

a b

Fig. 8. The Q–Q plots of the actual and the estimated task runtime. (a) For first resource, (b) for the second resource.

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 511
parameters and in general any detail used for creating the
rendered images.

A RIB file example is presented in Table 4, in which the
synthetic world consists of a cylinder. The cylinder surface
is ‘‘shiny’’, characterized by diffuse reflection coefficient of
0.2. The statement ‘‘WorldBegin’’ defines the begin of the
synthetic world, while the statement ‘‘WorldEnd’’ the end
of it. In this particular example, the ray tracing algorithm
has been used for 3D rendering with maximum level of
ray-tree to equal four (4) as indicated by the command line
‘‘option ‘‘render’’ integer max raylevel [4]’’. Perspective
projection is adopted, while image resolution is of 200 ·
Table 4
An example of a RIB file format

Projection ‘‘perspective’’ ‘‘fov’’ 40
Format 200 150 1
Option ‘‘render’’ ‘‘integer max raylevel’’ [4]
WorldBegin

Cylinder 1 -1 1 360
Surface ‘‘shiny’’ ‘‘Kd’’ [0.2]

WorldEnd
150 pixels as results from ‘‘format’’ statement. Table 5
presents the extracted descriptors used to characterize the
computational complexity of a 3D image rendering task
in case that the Ray Tracing algorithm is used.

An important issue, which affects the rendering work-
load, is the algorithm used to render a synthetic scene. Sev-
eral rendering algorithms have been proposed in the
literature, each affecting the computational load with a dif-
ferent way. Among the most popular and most commonly
used is the Ray Tracing algorithm, which is adopted in the
following. For each type of algorithm, different descriptors
are extracted and then used for the workload prediction. A
Java class has been designed and developed to parse the
RIB file that comprises the task and to extract the values
of the respective descriptor parameters so as to pass them
in the Workload Predictor for further processing.

6.3.3. Workload prediction performance

To train the non-linear model, which is used to predict
the task workload, we initially create a measurement set
consisting of 200 pairs of rendering descriptors along with
the respective workload. The measurement set is randomly

Table 5
The extracted descriptors si used to characterize the workload of 3D rendering Ray tracing algorithms

Descriptor RIB statement

Ray tracing descriptors

Maximum number of recursive rays Option ‘‘render’’ ‘‘integer max raylevel’’ [4]
Minimum Shadow distance Option ‘‘render’’ ‘‘float minshadowbias’’ [0.01]
Surface shadow property Attribute ‘‘render’’ ‘‘string casts shadows’’ [‘‘Os’’]

Other factors

Image resolution (width-height-pixel aspect ratio) Format 200 150 1
Displacement type Attribute ‘‘render’’ ‘‘integer truedisplacement’’ [0]
Bounding box coordinates Attribute ‘‘displacementbound’’ ‘‘string coordinatesystem’’ [‘‘current’’] ‘‘float sphere’’ [0]
Patch multiplier Attribute ‘‘render’’ ‘‘float patch multiplier’’ [1.0]
Minimum/Maximum level of subdivision Attribute ‘‘render’’ ‘‘float patch maxlevel’’ [256] Attribute ‘‘render’’ ‘‘float patch minlevel’’ [1]
Surface complexity For example: PatchMesh ‘‘bicubic’’ 13 ‘‘nonperiodic’’ 10 ‘‘nonperiodic’’ ‘‘P’’
Surface material type Surface ‘‘shiny’’ ‘‘Kd’’ [.1] ‘‘Kr’’ [0.5] ‘‘Ka’’ [0.1]
Light source type For example: LightSource ‘‘pointlight’’ 1 ‘‘from’’ [0100]

The ‘‘[]’’ refers to the default value of parameter.

512 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
partitioned into three disjoint sets; the training set, the
validation set and the test set. The training and the valida-
tion set is used to estimate the model parameters using the
least squares Marquardt–Levenberg algorithm [27]. The
test set is responsible for evaluating the performance of
the non-linear model. The 60% of data of the measurement
set comprises the training set, while the rest 40% are equal-
ly divided for the validation and the test set.

Fig. 9 illustrates the relative squared error of the actual
workload (as provided using the method of Section 4.2)
and the predicted one (as provided by the non-linear mod-
el), for the 50 samples of the test set. The error is expressed
as

Ep ¼
kx̂� ~xk
kx̂k � 100%; ð27Þ

where iÆi denotes the L2-norm. As can be seen, the error is less
than 20% in the worst case, with an average value being equal
to 14%. These error values point out the significance and
validity of the non-linear workload prediction model that
has been designed and proposed in this paper, since it gives
a well-bound prediction of a rendering task workload.
5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Number of Tasks

E
p

Fig. 9. The prediction error as obtained from the proposed non-linear
model for 50 3D rendering tasks outside the training set.
6.4. Scheduling

For the scheduling results, initially we define the normal-
ized load of the Grid infrastructure as follows

q ¼
P

iX i

C
; ð28Þ

where we recall that Xi is the demanded task rate and C the
total processor capacity.

Fig. 10(a) presents the scheduling efficiency as obtained
using three different scheduling algorithms; the proposed
fair scheduling scheme (AFTOS), the Earliest Deadline
First (EDF), and the First Come First Serve (FCFS) poli-
cy. The results have been obtained by submitting 40 real file
3D rending tasks to the Grid infrastructure presented in
Section 6.1. For each 3D rendering task, the workload
prediction module is activated to provide an approximate
of the actual task complexity, which is then used for the
scheduling policies.

In this figure the scheduling efficiency is measured as
the relative error between the demanded task rates and the
actual schedulable rates,

EX ¼
X

i

X i � X c
i

�� ��
X i

; ð29Þ

where X c
i is the actual rate of the ith task. The actual task

rates equals X c
i ¼ fX i; 0g for the FCFS and EDF schedul-

ing scheme (depending whether the task are assigned for
execution or not) and X c

i ¼ ri for the AFTOS policy. In this
figure the error E1 has been plotted versus the normalized
load q. As is observed, the proposed Grid fair scheduling
algorithm outperforms the traditional scheduling policies
for all values of normalized load (smaller values of error
E1). The fluctuation in the values of error E1 are due to
the fact that the results have been obtained using real life
3D rendering tasks.

Fig. 10(b) presents the scheduling efficiency as measured
by the average relative deviation of the demanded task
deadlines to the actual task completion times,

0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

Normalized Load

E
X

 FCFS
EDF
AFTO

0 0.5 1 1.5

0

2

4

6

8

10

12
x 10-3

Normalized Load

 FCFS
EDF
AFTO

E
D

ba

Fig. 10. The evaluation performance of three scheduling schemes, the First Come First Serve (FCFS), the Earliest Deadline First (EDF) and the Adjusted
Fair Task Order (AFTO). (a) The error EX and (b) the error ED.

N. Doulamis et al. / Computer Communications 30 (2007) 499–515 513
ED ¼
1

N

X
i

Di �maxðDc
i ;DiÞ

�� ��
Di

; ð30Þ

where Di is the requested deadline and Dc
i is the actual com-

pletion time of the ith task. Note that tasks whose actual
completion time are smaller than their respective deadlines
do not contribute to ED. Again, we observe that the pro-
posed fair Grid scheduling algorithm yields much better
efficiency compared to the FCFS and EDF policies.

Fig. 11 present an example of the Graphical User Inter-
face (GUI) initially implemented in the framework of the
GRIA project. In particular, Fig. 11(a) presents the initial
GUI, where the user selects the type of application (i.e.,
rendering, finite element method), while Fig. 11(b) presents
the GUI where the task information are defined by the user
(i.e., task deadline or the task workload as predicted by the
load characterization/prediction module, location of the
input files, selection of services class, etc.).

7. Conclusions and future work

In this paper, we present a fair Grid scheduling scheme
incorporated with an efficient non-linear task workload
Fig. 11. Examples of the Graphical User Interface (GUI) used in the experim
parameters GUI.
prediction mechanism for enhancing the capabilities of
Grid computing in satisfying the negotiated QoS require-
ments set by the users. The task workload prediction is
achieved by modeling the task workload through a non-
linear function, the parameters of which are estimated
using concepts derived from functional analysis. More spe-
cifically, initially appropriate descriptors are extracted
from each task to describe its computational complexity.
Then, the non-linear relationship of the extracted descrip-
tors and the task workload is modeled as a finite number
of known functional components. The contribution of each
functional component to the non-linear relation (i.e., the
model coefficients) is estimated by a second order training
algorithm, such as the Marquardt–Levenberg approach
using a training set of appropriate samples.

The pairs of the training set are the task load descriptors
and the respective task workload. However, the desired
task workload cannot be measured, in contrast to the task
runtime on a particular resource. For this reason an opti-
mal estimate of the task workload is accomplished by
applying a least squares algorithm, which exploits informa-
tion of the actual task run times on several resources and
simultaneously takes into account the resource capacity.
ents in the adopted Grid infrastructure. (a) The sign in GUI. (b) The task

514 N. Doulamis et al. / Computer Communications 30 (2007) 499–515
A fair scheduling scheme is implemented for assigning the
tasks to the most appropriate processors for execution. In
our case, the task queuing order is selected with respect to
the adjusted task fair completion times, which are calculated
from the task fair rates, taking into account new arrivals and
tasks completions. On the contrary, processor assignment is
performed using the Earliest Completion Time (ECT) mod-
ified so that processors gaps are examined.

The proposed architecture has been implemented in a
Grid infrastructure in the framework of GRIA and
GRIDLAB European Union funded Research projects.
Our study has been shown that the demanded QoS users’
parameters are satisfied in a better and a fairer way. This
is due to the fact that in the proposed architecture, we
achieve very good performance in task workload predic-
tion and therefore in task runtime estimation, which sig-
nificantly enhances the scheduling performance. On the
other hand, the proposed fair scheduling scheme outper-
forms the traditional scheduling approaches in the sense
that it handles the demanded for execution tasks in a fair
way.

One issue for further investigation is to introduce an
adaptable non-linear workload prediction mechanism so
as to increase the prediction accuracy in complicated
real-life applications. The proposed workload prediction
scheme assumes that tasks derive from a specific class of
applications and therefore the non-linear relation between
the workload descriptors and the task actual load (non-
linear workload model) is constant. To overcome this con-
straint, adaptable non-linear modeling is required able to
update the non-linear relation according to the current task
characteristics.

Acknowledgements

The authors thank Mr. Dionysios Karaoglanoglou for
his assistant in implementing in Java environment the Grid
fair scheduling algorithms used in the proposed architec-
ture. The authors also thank the European Union for the
financial support in implementing the Grid architecture
in the framework of IST GRIA and GRIDLAB project
of this work.

References

[1] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling
scalable virtual organizations, International Journal Supercomputer
Applications 15 (3) (2001).

[2] W. Leinberger, V. Kumar, Information power grid: the new frontier
in parallel computing? IEEE Concurrency 7 (4) (1999) 75–84.

[3] R. Al-Ali, K. Amin, G. von Laszewski, O. Rana, D. Walker, M.
Hategan, N. Zaluzec, Analysis and provision of QoS for distributed
grid applications, Journal of Grid Computing 2 (2) (2004) 163–182.

[4] Scheduling Working Group of the Grid Forum, Document: 10.5,
September 2001.

[5] P. Dinda, Online prediction of the running time of tasks, Cluster
Computing 5 (3) (2002).

[6] E. Kreyszig, Introductory Functional Analysis with Applications,
Wiley, New York, 1989.
[7] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs
NJ, 1996.

[8] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall, Englewood
Cliffs NJ, 1992, The section on max-min fairness starts on p. 524.

[9] I. Foster, C. Kesselman, Globus: a metacomputing infrastructure
toolkit, International Journal of Supercomputer Applications 11 (2)
(1997) 115–128.

[10] J. Basney, M. Livny, T. Tannenbaum, High throughput computing
with condor, HPCU news 1 (2) (1997).

[11] D. Thain, T. Tannenbaum, M. Livny, Condor and the grid, in: F.
Berman, A.J.G. Hey, G. Fox (Eds.), Grid Computing: Making The
Global Infrastructure a Reality, Wiley, New York, 2003, ISBN: 0-
470-85319-0.

[12] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D.
Reed, L. Torczon, R. Wolski, The GrADS project: software support
for high-level grid application development, International Journal
of High Performance Computing Applications 15 (4) (2001) 327–
344.

[13] S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan, D. Grushin, N.
Kuzjurin, A. Pospelov, A. Shokurov, Comparison of scheduling
heuristics for grid resource broker, in: IEEE Fifth Mexican Interna-
tional Conference in Computer Science, Colima, México, 2004, pp.
388–392.

[14] D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini, G.R. Nudd, Local grid
scheduling techniques using performance prediction, IEE Proceedings
in Computers and Digital Techniques 150 (2) (2003) 87–96.

[15] S. Kim, J.B. Weissman, A genetic algorithm based approach for
scheduling decomposable data grid applications, in: International
Conference on Parallel Processing (ICPP’04), Montreal, Quebec,
Canada, 2004, pp. 406–413.

[16] Keqin Li, Experimental performance evaluation of job scheduling
and processor allocation algorithms for grid computing on meta-
computers, in: Proceeding of the IEEE 18th International Parallel and
Distributed processing Symposium (IPDPS), Santa Fe, New Mexico,
2004, pp. 170–177.

[17] J.M. Schopf, Ten actions when grid scheduling, in: J. Nabrzyski, J.M.
Schopf, J. Weglarz (Eds.), Grid Resource Management: State of the
Art and Future Trends, Kluwer, Dordrecht, 2003 (Chapter 2).

[18] M.A. Iverson, F. Ozguner, L. Potter, Statistical prediction of task
execution times through analytic benchmarking for scheduling in a
heterogeneous environment, IEEE Transactions on Computers 48
(12) (1999) 1374–1379.

[19] D. Pease, A. Ghafoor, I. Ahmad, D.L. Andrews, K. Foudil-Bey, T.E.
Karpinski, M.A. Mikki, M. Zerrouki, PAWS: a performance
evaluation tool for parallel computing systems, Computers 24 (1)
(1991) 18–29.

[20] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor, Estimating
Execution Time for Parallel Tasks in Heterogeneous Processing (HP)
Environment, in: Proceedings of the Heterogeneous Computing
Workshop, 1994, pp. 23–28.

[21] A.K. Parekh, R.G. Gallager, A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case, IEEE/ACM Transactions on Networking 1 (3) (1993) 344–
357.

[22] A. Demers, S. Keshav, S. Shenker, Design and analysis of a fair
queuing algorithm, in: Proceedings of the ACMSIGCOMM, Austin,
1989.

[23] F. Vraalsen, R.A. Aydt, C.L. Mendes, D.A. Reed, Performance
contracts: predicting and monitoring grid application behavior, in:
Proceedings of the 2nd International Workshop on Grid Com-
puting (GRID), vol. 2242, Denver, Colorado, Nov. 2001, pp. 154–
165.

[24] J.L. Hennessy, D.A. Patterson, D. Goldberg, Computer Architecture:
A Quantitative Approach, third ed., Morgan Kaufmann, San Mateo,
CA, 2002.

[25] T. Stricker, T. Cross, Global Address Space, Non-Uniform Band-
width: A Memory System Performance Characterization of Parallel

N. Doulamis et al. / Computer Com
Systems. in: Proceedings of IEEE Symposium on High-Performance
Computer Architecture (HPCA ’97), February 1997.

[26] N. Doulamis, A. Doulamis, A. Panagakis, K. Dolkas, T. Varvarigou,
E. Varvarigos, A combined fuzzy-neural network model for non-
linear prediction of 3D rendering workload in grid computing, IEEE
Transactions on Systems Man and Cybernetics, Part-B 34 (2) (2004)
1235–1247.

[27] D.W. Marquardt, An algorithm for least-squares estimation of
nonlinear parameters, Journal of the Society for Industrial and
Applied Mathematics 11 (2) (1963) 431–441.

[28] S. Haykin, Neural Networks: A Comprehensive Foundation, Mac-
millan, New York, 1994.

[29] E.B. Baum, D. Haussler, What size net gives valid generalization?
Neural Computation 1 (1) (1989) 151–160.

[30] M.S. Fineberg, O. Serlin, Multiprogramming for Hybrid Computa-
tion, in: Proceedings of IFIPS Fall Joint Computer Conference,
Thompson, Washington, DC, 1967.

[31] G. Allen, K. Davis, K. Dolkas, N. Doulamis, et al., Enabling
applications on the grid: a gridlab overview, International Journal
of High Performance Computing Applications 17 (4) (2003) 449–
466.

[32] IST-2001-33240, Grid Resources for Industrial Applications
(GRIA), European Union program of Information Societies
Technology.

[33] A. Watt, M. Watt, Advanced Animation and Rendering Techniques:
Theory and Practice, Addison-Welsey, New York, 1992.

Nikolaos Doulamis received the Diploma degree
in Electrical and Computer Engineering from the
National Technical University of Athens
(NTUA) in 1995 with the highest honor and the
Ph.D. degree in electrical and computer engi-
neering from NTUA in 2000. He joined the
Image, Video, and Multimedia Lab of NTUA in
1996 as research assistant. His Ph.D. thesis was
supported by the Bodosakis Foundation Schol-
arship. From 2002, he is a senior researcher in the
NTUA. In 2000, he was served as Chairman of

technical program committee of the VLBV’01 workshop, while he has also

served as program committee in several international conferences and
workshops. In 2000, he was given the Thomaidion Foundation best
journal paper award in conjunction with A. Doulamis. He is reviewer of
IEEE journals and conferences as well as and other leading international
journals. His research interest includes video transmission, content-based
image retrieval, summarization of video sequences and intelligent tech-
niques for video processing.

Anastasios Doulamis received the Diploma
degree in Electrical and Computer Engineering
from the National Technical University of Ath-
ens (NTUA) in 1995 with the highest honor. In
2000, he has received the Ph.D. degree in elec-
trical and computer engineering from the
NTUA. From 1996–2000, he was with the
Image, Video, and Multimedia Lab of the
NTUA as research assistant while in 2002, he
joined the NTUA as senior researcher. He is
now Assistant Professor at Technical University

of Crete. In 2001, he served as technical program chairman of the

VLBV’01. He has also served as program committee in several interna-
tional conferences and workshops. He is reviewer of IEEE journals and
conferences as well as and other leading international journals. He is
author of more than 100 papers in the above areas, in leading interna-
tional journals and conferences. His research interests include, non-linear
analysis, neural networks, multimedia content description, intelligent
techniques for video processing.
Antonios Litke received the diploma from the
Computer Engineering and Informatics Depart-
ment, University of Patras, Greece in 1999. After
that he has worked in the industrial sector as a
Telecom Software Engineer. Currently, he is pur-
suing his Ph.D. in the Telecommunication Labora-
tory of Electrical and Computer Engineering,
Department of National Technical University of
Athens and works as research associate in the
Institute of Communication and Computer Systems
participating in numerous EU and National funded

projects. His research interests include Grid computing, resource management

munications 30 (2007) 499–515 515
in heterogeneous systems, Web services, and information engineering.

Athanasios Panagakis received the B.Tech. degree
from the National Technical University of Athens,
Greece, in 2000 and the Ph.D. degree from the
National Technical University of Athens, in 2003.
Since 2000, he is a research associate in the Commu-
nications, Electronics, and Information Engineering
Division of the Electrical and Computer Engineering,
Department of NTUA. He has been involved in many
national and EU research projects (e.g., GRIA,
GridLab) and his current research interests include
workloadpredictionandgridaccountingmechanisms.
Theodora Varvarigou received the B. Tech degree
from the National Technical University of Athens,
Athens, Greece in 1988, the MS degrees in Electrical
Engineering (1989) and in Computer Science (1991)
from Stanford University, Stanford, California in
1989 and the Ph.D. degree from Stanford University
as well in 1991. She worked at AT&T Bell Labs,
Holmdel, New Jersey between 1991 and 1995.
Between 1995 and 1997, she worked as an Assistant
Professor at the Technical University of Crete, Cha-
nia, Greece. Since 1997, she is working as an Asso-

ciate Professor at the National Technical University of Athens. Her research

interests include Grid Technologies parallel algorithms and architectures, fault-
tolerant computation, optimisation algorithms, and content management.

Emmanouel (Manos) Varvarigos received a Diplo-
ma in Electrical and Computer Engineering from
the National Technical University of Athens in
1988, and the M.S. and Ph.D. degrees in Electrical
Engineering and Computer Science from the
Massachusetts Institute of Technology, Cam-
bridge, MA, in 1990 and 1992, respectively. In
1990, he worked as a researcher at Bell Commu-
nications Research, Morristown, NJ. From 1992 to
1998, he was an Assistant and later an Associate
Professor at the department of Electrical and

Computer Engineering at the University of California, Santa Barbara. In

1998–1999, he was an Associate Professor at the Electrical Engineering
department at Delft University of Technology, the Netherlands. In 1999, he
became a Professor at the department of Computer Engineering and
Informatics at the University of Patras, where he is the director of the
Communication Networks Laboratory. He is also the Director of Network
Technologies Sector of the Research Academic Computer Technology
Institute (RA-CTI). He was the organizer of the 1998 Workshop on Com-
munication networks and was in the program committee of several inter-
national conferences. His research activities are in the areas of protocols and
algorithms for high-speed networks, all-optical networks, high-performance
switch architectures, grid computing, parallel architectures, performance
evaluation, and ad hoc networks.

	Adjusted fair scheduling and non-linear workload prediction for QoS guarantees in grid computing
	Introduction
	Related work
	Problem formulation and notation
	Resource parameters
	Workload parameters
	Task workload description parameters
	Task runtime

	Task workload prediction
	Training set construction
	Workload estimation
	Non-linear model training
	Task runtime prediction

	Fair grid scheduling algorithms
	Task queuing order selection
	Fair rates estimation
	Adjusted fair rates estimation
	Fair completion times estimation

	Processor assignment selection

	Experimental results
	Grid infrastructure
	Grid application
	Workflow enactor
	Task load characterization
	Grid access authorization
	Grid service proxy
	Grid scheduler
	Negotiation service
	Resource manager

	Grid resource description
	Workload prediction results
	Runtime estimation model results
	Feature extraction results
	Workload prediction performance

	Scheduling

	Conclusions and future work
	Acknowledgements
	References

