Telecommunication Systems 13 (2000) 3-20 3

A library of static and dynamic communication algorithms
for parallel computation *

Emmanouel A. Varvarigos

Department of Electrical and Computer Engineering, University of California, Santa Barbara,
CA 93106, USA

Communication efficiency is one of the keys to the broad success of parallel computa-
tion, as one can see by looking at the successes of parallel computation, which are currently
limited to applications that have small communication requirements, or applications that
use a small number of processors. In order to use fine grain parallel computation for a
broader range of applications, efficient algorithms to execute the underlying interprocessor
communications have to be developed. In this paper we survey several generic static and
dynamic communication problems that are important for parallel computation, and present
some general methodologies for addressing these problems. Our objective is to obtain a
collection of communication algorithms to execute certain prototype communication tasks
that arise often in applications. These agorithms can be called as communication primi-
tives by the programmer or the compiler of a multiprocessor computer, in the same way
that subroutines implementing standard functions are called from a library of functionsin a
conventional computer. We discuss both algorithms to execute static (deterministic) primi-
tive communication tasks, as well as schemes that are appropriate for dynamic (stochastic)
environments. Our emphasis is on algorithms that apply to many similar problems and can
be used in various network topologies.

1. Introduction

The impressive progress in hardware technology during the past decades has en-
abled the use of thousands of processors within the same computer. N processors
working on some problem, however, do not necessarily solve it IV times faster than
a single processor working alone. A major (but not the only) cause of inefficiency is
the communication overhead. Processors, when doing computations, often have to ex-
change intermediate results. In many cases, the time required for routing the messages
is more than the time spent by the processors doing computations. Thus, at least with
current technology, communication seems to be the bottleneck of parallel computation.

Our aim is to describe a collection of communication agorithms to organize the
movement of data within a message passing parallel computer in order to achieve
efficient (close to 100%, if possible) utilization of the communication resources. We

* Research supported by NSF under Grant NSF-RIA-08930554. Part of the work was performed when
the author was a visitor at T.U. Delft.

0 J.C. Baltzer AG, Science Publishers

4 E.A. Varvarigos / A library of communication algorithms

first study static communication problems, where all packets involved are available
at the same time. For such communication tasks, the main objective is to design
agorithms that execute them in the shortest possible time. We then consider dynamic
routing problems, where packets are generated at random times over an infinite time
horizon. In such dynamic environments, the main objective is to design algorithms
that are of the on-line type and distributed, and that can perform the communications
efficiently according to some probabilistic criteria, such as the average delay and the
average throughput.

When choosing the communication tasks to investigate we are motivated by
the underlying computations that give rise to the information exchange between the
processors (e.g., matrix multiplication and transposition, image processing applications,
fixed point computations). The performance of aparallel computing system will depend
on the number of generic traffic patterns (scenarios) that its designers have anticipated,
and the efficiency of the algorithms that they have precomputed and included in a
communication library to execute them. Our emphasis is on methodologies that are
applicable to a number of multiprocessor networks rather than being specific to a
particular topology. Furthermore, some of these methodologies deal with whole classes
of communication tasks rather than with individual tasks. We consider this important
because one of the problems of parallel computation theory is the lack of unified
approaches designed to deal with similar problems.

The treffic patterns that we discuss arise in both MIMD and SIMD machines.
The results on static communication tasks, however, will be most useful for SIMD
machines. The reason is that in SIMD machines all processors execute the same in-
structions; this makes the resulting communication pattern more regular, easily de-
scribable, and predictable, which leaves more space for clever organizations of the
data movement. We are mainly interested in fine grain paralel computing systems for
two reasons. The first is that such systems can achieve speedups of several orders of
magnitude compared to conventional computers. A second reason is that in fine grain
paralel computers, the communication part becomes more significant due to the larger
size of the network and the information exchange that has to take place.

2. Primitive communication problems

We first define some of the primitive communication problems that we consider
important for parallel computing applications. In particular, section 2.1 deals with static
(deterministic) communication tasks, while section 2.2 deals with dynamic (stochastic)
communication problems. Later, in section 3, we discuss general methodologies for
obtaining efficient algorithms for some of these problems.

2.1. Satic communication tasks

There are some traffic patterns that arise frequently in applications. As a result
it is desirable to know in advance communication algorithms that execute them in

E.A. Varvarigos / A library of communication algorithms 5

the minimum number of steps. The time required to execute these primitive tasks is
a good performance measure for comparing paralel computers (see [3]). Saad and
Shultz [20,21] were the first to consider such problems and to propose corresponding
routing algorithms. Johnsson and Ho [13], Bertsekas et a. [2], and Varvarigos and
Bertsekas [28-31] have developed minimum and nearly minimum completion time
algorithms for similar routing problems using various communication models, for a
number of topologies. Severa other related works that deal with primitive communi-
cation problems can be found in [4,6-12,15,16,19,24-26].

In this section we describe briefly some of the static primitive communication
tasks that we believe should be part of the communication library of paralel comput-
ers. Our description will follow a hierarchical order, going from the least expensive
tasks (that is, those that require a small number of packet transmissions) to the most
expensive ones, from those that involve a single node to those that involve multiple
nodes, and from the special cases to their generalizations. This order gives a natural
way to organize the communication library: the compiler or the programmer should
look for the least expensive among the prototype tasks that execute the communication
pattern at hand.

The simplest of al communication tasks is one-to-one (1-1) communication,
where a node sends a packet to some other node, and it corresponds to a processor
accessing a nonlocal memory location. The relevant performance criteria in this case
are the diameter and the mean internodal distance of the network.

A more complicated task is the single node broadcast (SNB for brevity), where
the same packet is sent (copied) from a given node to all other nodes. A single node
broadcast can be accomplished by transmitting the packet along a spanning tree rooted
at agiven node. It corresponds to avariable being read by all processors simultaneously.
A dua task is the single node accumulation (SNA), where a packet is sent to a given
node from every other node; here, we assume that the packets can be combined on
a link, with the combined transmission time being equal to the transmission time of
a single packet. The operator used in combining the packets can be any associative
operator, such as +, -, min, max, and others. The SNA implements a concurrent
write from al nodes to a single memory location. The spanning tree used for the SNB
with the arcs reversed can be used for the SNA task as well; thus, the time complexity
of both tasks is equal to the diameter of the network. A problem more genera than
the SNB is the selective single node broadcast (SSNB), where the same packet is sent
from a given node to some, but not necessarily al, other nodes. A dual to the SSNB
task is the selective single node accumulation (SSNA), where several nodes of the
network send a packet to a particular node; here packets can be combined on any link
(so the SSNA task is a generalization of the SNA task). A SSNB (respectively SSNA)
corresponds to the case where a set of processors read (respectively write to) the same
memory location.

A task more expensive than the previous ones is the single node scatter (SNS),
which involves sending a separate packet from a given node to every other node (here
a node sends different packets to different nodes in contrast with the single node

6 E.A. Varvarigos / A library of communication algorithms

broadcast where a node sends the same packet to all other nodes). A dua problem,
called single node gather problem (SNG), involves collecting a packet at a given
node from every other node. An algorithm that solves the single node scatter problem
consists of a schedule of packet transmissions on links that properly takes queueing into
account. By reversing the schedule it can be seen that given an agorithm that solves
the single node scatter problem, we can find an algorithm that solves the single node
gather problem and takes the same amount of communication time. A generaization
of the SNS (or SNG) problem is the selective single node scatter (respectively selective
single node gather), abbreviated SSNS (respectively SSNG), where a different packet
is sent from (respectively collected at) a given node to some (respectively from some),
but not necessarily all, other nodes.

In al the previous tasks, there is asingle node that is executing acommand and is
sending packets to (or collecting packets from) one or more nodes. Generalizations of
the previous tasks, where the same action is taken by many or perhaps al processors,
also appear very frequently in applications. For example, in SIMD machines where
al processors are controlled by the same instruction stream (each processor has, of
course, the option of ignoring a command) we expect the same task to be executed by
all or alarge subset of the nodes. Even in MIMD machines, there are many algorithms
that require the tasks described above to be executed by many or al nodes.

A multinode version of the one-to-one communication is the permutation task,
where every processor sends a packet to some other node, with no two destinations
being the same. A multinode version of the single node broadcast task is the multinode
broadcast (or MNB). In the MNB each node wishes to broadcast a packet to al the
other nodes. A task more genera than the MNB is the partial multinode broadcast
(or PMNB) where an (arbitrary) subset of the nodes wants to broadcast a packet to al
the nodes. The PMNB task, along with being important on its own merit, is aso a
critical component of the dynamic broadcasting algorithms discussed in section 3.4 for
genera interconnection networks. A dual to the partial multinode broadcast problem is
the partial multinode accumulation (PMNA), where every node of the network sends
a packet to each node in a given set of nodes; here, we assume that packets with the
same destination can be combined on a link, with the operator used in combining the
packets being any associative operator. The PMNA implements a concurrent write
from all nodes to each one of a given set of memory locations (a different number
is written at each location). The PMNB and the PMNA are dua tasks to each other:
origin (destination) nodes in the PMNB correspond to destination (origin) nodes in
the PMNA, and the copying operation in the PMNB corresponds to the combining
operation in the PMNA.

A multinode version of the single node scatter is the total exchange (TE) task,
where each node sends a separate (personalized) packet to every other node. A total
exchange arises, for example, during the transposition of an N x N matrix stored by
columns in an N-processor computer. To transpose the matrix, every processor i has
to send the (z, k)th entry to processor k, for all k, which is atotal exchange. An even
more general task than the total exchange is the partial multinode scatter (or PMNS),

E.A. Varvarigos / A library of communication algorithms 7

Single node tasks Multinode tasks
SSNS/SSNG PMNS/PMNG
SNS/SNG |- L — — — - TE
\i |
SSNB/SSNA PMNB/PMNA
SNB/SNA | — — — — > MNB
i y
-1 === » Permutation

1-1: one-to-one

SNB : single node broadcast

SNA : single node accumulation

SSNB: selective single node broadcast
SSNA: selective single node accumulation

MNB : multinode broadcast

PMNB: partial multinode broadcast
PMNA: partial multinode accumulation
TE : total exchange

PMNS: partial multinode scatter
PMNG: partial multinode gather

SNS : single node scatter
SNG : single node gather
SSNS: selective single node scatter
SSNG: selective single node gather

Figure 1. The hierarchy of the primitive static communication tasks. A directed arc from problem A to

problem B indicates that an algorithm that solves problem A can also solve problem B. The inclusion

of the box corresponding to problem A in the box corresponding to problem B indicates that problem B

is a generdization of problem A. The tasks at the left involve either a single transmitting node or a

single callecting node. A dashed directed arc from problem A to problem B indicates that problem B is
a multinode version of problem A.

where an (arbitrary) subset of the nodes of an IN-processor system sends a separate
packet to each of the N — 1 other processors. A dual of the partial multinode scatter
problem is the partial multinode gather problem (or PMNG), where each node in a
subset of nodes of the network collects a separate packet from every other node of
the network. Examples where the MNB, PMNB, PMNA, TE, PMNS, and PMNG
tasks appear are given in section 3. The PMNS is the highest problem in hierarchy
among the previously described problems in terms of difficulty. Given an agorithm
for the PMNS we can find algorithms to execute all the other tasks that we presented,
athough usually not efficiently.

A last class of communication tasks that will be of interest to us is the class of
isotropic tasks, introduced in [28]. These are tasks defined in regular networks (as are
most of the networks used in parallel computation), which are characterized by a type
of symmetry with respect to each origin. For example, the total exchange problem in a
hypercube, a d-dimensional mesh, a folded-cube, or a Manhattan Street network is an
isotropic task; the communication problem “looks identical” to every node. Figure 1
shows the primitive communication tasks in a hierarchical order.

8 E.A. Varvarigos / A library of communication algorithms

2.2. Dynamic communication problems

All the tasks described in section 2.1 are static in the sense that there is some work
to be performed once and for al. All the nodes know which task they execute, and (for
the multinode tasks) they are synchronized to start at the same time; the only objective
is to finish the job as fast as possible. Optimal or near-optimal agorithms (schedules)
for static communication tasks are precomputed, and are called when needed in a
paralel program.

Except for the static tasks, where conditions are rather favorable, one can envision
situations where communication requests are not deterministic, but they are generated
at random instants. We call such an environment dynamic. The execution of asynchro-
nous computation algorithms is one such situation, but it is reasonable to expect that
in many systems a dynamic, largely unpredictable communication environment may
be the rule and not the exception. Multitasking, time-sharing, run-time generation of
communication requests, and difficulty of identifying prototype tasks at compilation
time are some other reasons that make the use of precomputed static algorithms dif-
ficult, and motivate us to look for dynamic schemes that will run continuously, and
execute on-line the communication requests.

We have chosen to discuss two dynamic communication problems, which we call
the dynamic broadcasting and the dynamic scattering problem, both because of their
potentia for increasing the general understanding of dynamic problems and for their
importance in their own right. In these problems, communication requests (broadcasts
or scatters) are generated at random instants at each node of a network according to
arandom process over an infinite time horizon. The performance criteria that we will
use are the average number of communication requests that are executed per unit of
time (throughput), and the average delay to serve a request. Communication schemes
for the dynamic broadcasting and the dynamic scattering problems can only be useful
if they are on-line, distributed, and easy to implement.

The fact that the communication requests (broadcasts or scatters) are generated
randomly does not necessarily imply that they should be executed in aunorganized way.
For example, in the case where broadcast requests are generated at random instants at
each node, it was found in [32] that some global information is very helpful. Such
information can be gathered on line at very little cost, and can be used to organize the
packet transmissions.

3. Algorithms for primitive communication problems

In this section we describe some general methodologies for obtaining algorithms
for the primitive communication problems defined in the previous section. In particu-
lar, in section 3.1 we consider the class of isotropic tasks, which include a number of
important communication problems as specia cases. In section 3.2 we focus on static
communication tasks that arise during the transposition of sparse matrices. In sections
3.3 and 3.4 we turn our attention to broadcasting problems; in particular, in section 3.3

E.A. Varvarigos / A library of communication algorithms 9

we discuss static broadcasting tasks, while in section 3.4 we consider the dynamic
broadcasting problem. Finally, in section 3.5 we discuss how the methodologies de-
veloped for dynamic broadcasting can be extended to other dynamic communication
problems.

We assume throughout the section that information is transmitted in the form of
packets, each of which requires one unit of time to be transmitted over alink. Thisis
usualy arealistic assumption. It also congtitutes an abstraction that enables us to focus
on the many remaining issues involved in the design of communication agorithms.
This abstraction provides a way to measure the performance of communication ago-
rithms, and compare it with lower and upper bounds. Some authors [13,20] divide the
delay required for a packet transmission over a link into two parts: a start-up delay
which is the same for all packets, and atransmission delay which is proportional to the
length of a packet. We believe that such a distinction complicates the picture without
providing enough additiona insight. In any case, appropriate modifications can always
be made with little effort to convert the complexity results that we obtain to the other
model.

We assume that packets are transmitted in a store and forward fashion. This
leaves out the option of wormhole routing [5], where a packet starts being transmitted
before it has been fully received at anode. In this way, the packet delay is reduced due
to pipelining of the packet bits over several links. Most of the static algorithms that we
discuss achieve utilization close to 100% of some critical communication resource, and
therefore they cannot be improved by using wormhole or some other kind of routing.
Wormhole routing becomes very interesting when the load in the network is light and
the messages are relatively long.

3.1. Isotropic and nearly isotropic tasks

The class of isotropic tasks was introduced in [28] for hypercubes and
d-dimensional meshes, and were later extended to other topologies [25,26]. Isotropic
tasks are characterized by transmission requirements that are symmetric with respect to
origin node. For example, the total exchange problem (see section 2.1) is an isotropic
task; the communication problem “looks identical” to every node. The structure of
isotropic tasks can be exploited particularly well in networks that have themselves
a symmetric structure, such as a hypercube, a wraparound mesh, a folded-cube, a
Manhattan Street, and other networks.

An important data structure that is useful in dealing with isotropic tasks is that
of the task matrix of node s, which will be denoted by T'(s). The task matrix T'(s)
is the matrix that contains as rows the routing tags of all the packets that have to
be sent by node s for the task to be completed. Of course, the routing tags of the
packets are defined in a different way for each regular topology (see [25,26,28]). For
example, in d-dimensiona hypercubes, the routing tag of a packet is defined as the
bitwise exclusive OR operation s@t between the source s and the destination address ¢
of the packet. In a d-dimensional wraparound mesh, the routing tag of a packet is

10 E.A. Varvarigos / A library of communication algorithms

0 2 0 2
0 1 0 2
1 0 2 0
1 1 1
0 2 0 1
0 1 1 2 ¢} 1 0
0 0 2 0
1 0 1
2 0 0 0
1111]o 0 1 0 1
0 1 1 0
1 0 0
1 0 0 1
ol 1]o 1 0 1 0
0 0] 0 0 [} 1
0 o] 1 0
LINK DI- 1 2 0 1 0 0
MENSION:
1 0 0 0
LINK: North South East West
(a) Hypercube Task Matrix (b) 2-dimensional Mesh Task Matrix

Figure 2. (a) The task matrix for the TE problem in a d-dimensional hypercube has 2¢ — 1 rows and
d columns. The figure illustrates the case where d = 3. The critical sum h in this caseis equal to 4 and it
is also equal to the optimal completion time of the TE. (b) Illustrates the task matrix for the TE problem
in a 2-dimensional mesh with 3 nodes along each dimension. The critical sum (and the completion time
of the TE task) is equal to 8. Note that the ask matrix is defined in a different way for each topology.

a 2d-dimensiona vector that describes the relative location of the destination with
respect to the source of the packet (this definition for the mesh is more convenient for
our pursposes than the more common definition of the routing tag as a d-dimensional
vector whose entries can take both positive and negative values, see [28] for more
details). For a communication task in a regular topology to be isotropic, we require
that T'(s) = T for al nodes s. Figure 2 indicates the task matrix 7' that corresponds
to atotal exchange in a 3-dimensiona hypercube and in a 3 x 3 wraparound mesh.
By limiting our attention to symmetric routing agorithms, we can show that exe-
cuting isotropic tasks in regular topologies is equivalent to solving a matrix decompo-
sition problem. This relates the routing problem, which is a scheduling problem with
a combinatorial character, with a matrix decomposition problem, which is a problem
in linear algebra. Such a connection provides a simpler and more powerful characteri-
zation of optimal routing algorithms for the total exchange and other related problems
than in other works (e.g., [2,7,9,13,21]). It adso alows simple and elegant analyses of
minimum average delay algorithms and near-optimal greedy algorithms; see [28].
We define the critical sum i of the task matrix 7" to be equal to max; ;(rs, ¢;),
where r; is the sum of the entries of row i, c; is the sum of the entries of column j, and
the maximization is performed over al rows i and columns j of 7'. It can be shown
that the optimal completion time of an isotropic task in a hypercube, d-dimensional
mesh, folded-cube, or Manhattan Street network is equal to the critical sum h of its task
matrix (recall that the routing tags and, as a result, the task matrices are defined in a
different way in each of these topologies). It can aso be shown using this formulation

E.A. Varvarigos / A library of communication algorithms 11

that a class of particularly simple-minded agorithms can achieve completion time
which is larger than the optimal execution time by at most a small constant. These
algorithms are required to satisfy just a very weak and natural restriction; they must
never leave a communication link idle as long as there is a waiting packet that can
reduce its distance to its destination by using this link (see [28]).

Isotropic tasks turned out to be a practically important and analytically interesting
class of communication problems. They aso motivate a number of new interesting
research directions. Firgt, it is clear that there is an incentive to formulate new routing
problems in terms of isotropic or “ nearly isotropic” tasks, whenever thisis reasonable,
to take advantage of the corresponding ssimple and elegant analysis. For this to happen,
it is important to develop criteria that capture the notion of “closeness’ to an isotropic
task. One idea (used in [31]) is to characterize a task as nearly isotropic when it
can be divided into an isotropic and a nonisotropic part, such that the transmission
requirements of the latter are smaller than the transmission requirements of the former.
A number of problems that arise in image processing and in numerical agorithms
would fall into the class of nearly isotropic tasks according to this criterion. For tasks
that satisfy this criterion, near-optimal agorithms could be found by expanding upon
the theory of isotropic tasks.

The efficient communication agorithms obtained for hypercubes [28], d-dimen-
sional meshes [28], folded cubes [25], and Manhattan Street [26] networks indicate that
it may be both possible and fruitful to define isotropic and nearly isotropic tasks for
other networks of interest. Another problem is to examine the properties of a network
(e.g., regularity, hierarchical structure) that if present will make isotropic tasks on this
network analytically tractable. This would permit us to deal with the total exchange
and other important related problems in a unified way for a number of topologies.

3.2. Transposition of sparse matrices

We have mentioned that the transposition of a (dense) matrix stored by columns
in a paralel computer is equivalent to a total exchange, which is the most expensive
task among those defined in section 2.1 (e.g., it requires N/2 steps to execute in a
hypercube). The question that arisesisthe following. Can we perform the transposition
faster when the matrix is sparse? Since most large matrices are sparse, the importance
of this question is evident.

An agorithm for transposing a banded matrix (i.e., a matrix that has nonzero
entries only within a band around its diagonal) stored by columns in a hypercube was
proposed in [31], and was shown to be of the optimal order of magnitude when the
matrix bandwidth B is ©(N¢), for some constant ¢ > 0, where N is the number of
processors and optimality is considered over al possible column-to-processor assign-
ments. The method used in this work was to store the banded matrix in such away that
the communication requirements for the transposition task become “amost identical”
for al nodes. It still remains an open question to find an agorithm that will be optimal

12 E.A. Varvarigos / A library of communication algorithms

x1 dense columns M 1 T M 2
5 dense rows T
= +
PMNS PMNG
Only My <N nodes send a personalized Only Ma <N nodes receive a personalized

packet to every other node. This is a PMNS. packet from every other node. This is a PMNG.

Figure 3. The transposition of a matrix that has M dense rows and M- dense columns can be performed
by executing a PMNS followed by a PMNG. Here we assume that each processor stores a column of the
matrix.

for any bandwidth B in a hypercube. The problem is aso ill open, to the best of our
knowledge, for al other topologies of interest.

Other matrix sparsity patterns also deserve attention. Suppose, for example, that
we are given an N x N matrix with only M; dense (honzero) columns, stored by
columns in a multiprocessor computer. The transposition of this matrix results in
the partial multinode scatter task (PMNS), where only Ay arbitrary nodes send a
(separate) packet to every other node. Similarly, if the matrix has M, dense rows
then its transposition results in a partial multinode gather task (PMNG), where M
arbitrary nodes collect a (distinct) packet from every other node of the network (the
combining of packets originated at different nodes is not alowed). By combining a
PMNS and a PMNG algorithm we obtain an agorithm to transpose a matrix with M
dense columns and M, dense rows, located at arbitrary positions (see figure 3). The
smaller M; and M, are, the more beneficiary it becomes to use efficient PMNS and
PMNG agorithms instead of TE agorithms. PMNS and PMNG agorithms of optimal
order were given in [30] for hypercubes and 2-dimensional arrays. Given the variety
of applications where these two tasks arise we believe it isimportant to find algorithms
to execute them in other topologies of interest. Even in the case of the hypercube and
the 2-dimensiona array, more work is required to improve the constants that appear
in the time complexity results of the existing agorithms.

3.3. The partial multinode broadcast problem

Consider iterations of the form x = f(x) where each processor computes an
entry (or some entries) of the vector x. At the end of each iteration it is necessary that
each processor broadcasts the updated value of the component that it computes to all
other processors in order to be used at the next iteration. This a multinode broadcast
(MNB). Algorithms to execute the MNB task in several topologies of interest are given
in [1-3,9,13,21,29].

In iterations of the kind given above it is probable that only some of the com-
ponents of the vector = change appreciably during an iteration. As these iterations

E.A. Varvarigos / A library of communication algorithms 13

approach their convergence point, fewer and fewer of the processors need to broadcast
the updated vaues of the components of « that they compute. This gives rise to the
partiadl multinode broadcast task (PMNB), where a strict (but unpredictable) subset of
the processors has to broadcast a packet. The PMNB task arises also in clustering al-
gorithms (see [18]), and other problems. The PMNB task, aside from being important
on its own merit, is also a critical subroutine of the dynamic broadcast schemes that
we will examine in the next subsection. Because of its many applications we believe
that the PMNB deserves a position among the prototype tasks of a communication
library.

Algorithms to execute the PMNB task have been proposed in [23] for hypercubes,
and in [30,32] for hypercubes and d-dimensional meshes. The PMNB schemes in the
previous references use edge-digoint spanning trees to perform the broadcasts; each
packet selects one of the trees and is broadcast on it in a greedy way, with conflicts
being resolved arbitrarily (in the hybercube PMNB algorithm of [23], a special node
gathers al the packets and decides the tree on which each of them is broadcast; in
the PMNB algorithms given in [30,32] the choice of the tree is made locally at each
node, based on some global parameters that each node obtains through a parallel prefix
operation).

The PMNB problem in agenera graph was considered in [27]. It was shown that
if agraph G has k edge-disoint spanning trees 7%, . .., 7" with diameters L1, ..., Ly,
respectively, then PMNB task in (G, can be executed in at most

M
TPMNB<?+L+25

dots, where M isthe total number of packets that have to be broadcast, L = Zle L;/k
is the average of the tree diameters, and ¢ is the diameter of GG. The agorithm consists
of two phases: in the first phase, a paralée prefix operation is performed, where each
node learns the total number of packets that have to be broadcast (and some additional
information). This information is used by the nodes in the second phase to choose the
spanning tree on which each packet is broadcast. The algorithm works even with the
(more restrictive) half-duplex communication model, where a link cannot be used for
both transmission and reception at the same time. A lower bound for the time required
to execute aPMNB in a graph that has a maximum number & of edge-digoint spanning
trees can be found to be

M
T > max _’6 ’
PMNB (2]{7 >

for the full-duplex communication model, and

M
EVINC max<?, 5) :

for the half-duplex communication model. These lower bounds hold for any choice of
the initia locations of packets that have to be broadcast. Reducing the gap between

14 E.A. Varvarigos / A library of communication algorithms

the upper and the lower bounds on the time required to execute the PMNB task in a
genera graph (especially for the full-duplex model) is an open question.

It turns out that by finding an agorithm for the PMNB problem in a given
network, we immediately obtain a scheme for the dynamic broadcasting problem in
that network. The dynamic broadcasting problem is described next.

3.4. The dynamic broadcasting problem

In static broadcasting tasks considered in section 3.3, we assume that at time
t = 0 some particular (but probably unspecified) nodes have to broadcast a packet to
al the nodes once and for al. Static broadcasting tasks of various kinds have been
studied extensively in the parallel computer literature (see references in the previous
subsection). In the dynamic broadcasting problem, we assume that broadcast requests
are generated at each node according to a random process with rate A (we will assume
independent Poisson processes in the analysis). We are interested in routing schemes
that work correctly in such a stochastic environment, and in their performance.

We use three criteria to evauate the performance of a dynamic broadcasting
scheme in a given network topology. The first criterion is the maximum broadcast
throughput, which is the maximum generation rate per node A that can be accommo-
dated by a broadcasting scheme with the queueing delays being finite. The second
criterion is the average broadcast delay 3, which is the average time that elapses
between the generation of a packet at a node and the time its broadcast to all the other
nodes is completed. The third criterion is the average reception delay R, which is the
average time that elapses between the generation of a packet at a node and the time
a particular node s receives a copy of the packet, averaged over all nodes s of the
network. Since for the broadcast of a packet to be completed all nodes must receive a
copy of it, we have R < B, for any broadcasting scheme. We set two objectives for
a dynamic broadcasting scheme: stability for as big a load as possible, and average
broadcast and reception delays that are of the order of the diameter for any fixed load
in the stability region.

The dynamic broadcasting problem has been considered in [22] for hyper-
cubes, [17] for 2-dimensiona meshes, and [25,26,30,32] for hypercubes, d-dimensional
meshes, folded-cubes and Manhattan Street networks, respectively. The two hypercube
agorithms proposed in [22] that are most interesting from a theoretical point of view
are the nonidling scheme with priority rule, and the idling scheme. The stability ob-
jective described above is met by the nonidling scheme, but its average delay analysis
is approximate. The idling scheme, on the other hand, provably meets the delay ob-
jective, but its stability region is roughly 2/3 of the maximum possible. The schemes
proposed in [30,32] for hypercubes and meshes have a stability region that tends to
the maximum possible as the number of nodes tends to infinity, and an average delay
that is of the order of the diameter of the network for any fixed load in the stability
region. However, if the asymptotics of the delay are taken simultaneously with respect
to the load and with respect to the network size, then the delay has not been proved

E.A. Varvarigos / A library of communication algorithms 15

to be optimal (there is a gap between the average delay of the scheme, and a universal
lower bound on the average delay of any broadcasting scheme). Recently [33], a pri-
ority broadcast scheme that outperforms the previous schemes for the hypercube was
proposed; its analysis, however, is approximate.

The dynamic broadcasting problem for an arbitrary topology has been examined
in [27], where an indirect and a direct dynamic broadcasting scheme were proposed.
The indirect broadcasting scheme essentially consists of the successive execution of
PMNB algorithms, each starting when the previous one has finished. Even though the
duration of each PMNB period is random (because packet arrivals are random), it is
known to al the nodes of the network, because each node learns during the parallel
prefix operation of the PMNB agorithm the total number of packets M that have to
be broadcast, and, from there, the duration of the PMNB period (which is at most
M/k + L + 26). The performance of the indirect broadcasting scheme is given by the
following theorem.

Indirect broadcasting scheme theorem. Let G be a (bidirectional) network that has
k edge-disoint trees. Let L be the average diameter of the edge-digoint spanning
trees, and 6 be the diameter of G, and assume that the broadcasts are generated at each
node of the network according to a Poisson process with rate A, independently of the
other nodes. Then the indirect broadcasting scheme that uses the PMNB of section 3.3

is stable for
k
)\ AT
< N

and has average broadcast delay B that satisfies

gePmr+t2 (L+2)(1+p)B=p)
= 2k(1—p) 2(1—p) ’

where p = k/N. Moreover, the average broadcast delay for light load satisfies

_ 1
B<L5-L+3+7, p~0

In the second broadcasting scheme (called the direct broadcasting scheme) each
packet selects upon its generation one of the & edge-digoint spanning trees, and is
broadcast on it in a greedy way. A packet that is broadcast on tree 77 is referred
to as a packet of class j. At every dot, every node v considers each of its incident
links (v, w) € T7. If v has received a packet of class j that it has neither sent already
to w nor it has yet received from w, then v sends such a packet on link (v, w). If
v does not have such a packet it sends nothing on (v,w). When more than one
packets are eligible for transmission on link (v,w), one of them is transmitted and
the remaining are queued. The performance of the direct broadcasting scheme can be
evaluated analytically without using any approximating assumptions and is given by
the following theorem.

16 E.A. Varvarigos / A library of communication algorithms

Direct broadcasting scheme theorem. Consider a graph G that has £ edge-digoint
trees 77, j = 1,2,...,k, and let I, be the distance between nodes s and ¢ using
only links of tree T9. Let T7%(s), T72(s),...,T7™(s) be the subtrees in which 77 is
partitioned when s is removed, and n; 4(s) the number of nodes of tree T94(s). If the
broadcasts are generated at each node of the network according to a Poisson process
with rate)\, independently of the other nodes, then the average reception delay R of
the direct broadcasting scheme is

RoLiip A SNSRI ml?

where

is the mean internodal distance of the spanning trees, averaged over al nodesin atree
and over al trees. The direct broadcasting scheme is stable if and only if

k
N-1

A<

Note that even though the expression for the average reception delay in the
preceding theorem may look complicated, all the parameters involved in it are known
once the spanning trees have been chosen.

It can be shown [27] that a necessary stability condition for a general graph is
A < 2k/N, for the full-duplex communication model, and A < k/N, for the haf-
duplex model, where k is the maximum number of edge-digoint spanning trees of
the graph, and N is the number of nodes. Therefore, for the haf-duplex model the
stability region of the indirect broadcasting scheme is equal to the maximum possible,
while for the half-duplex model the stability regions of both the direct and the indirect
broadcasting scheme are half of that given by the corresponding upper bound (note that
the direct broadcasting scheme assumes the full-duplex communication model, while
the indirect broadcasting scheme works under both the full-duplex and the half-duplex
communication model).

For a