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Abstract.  
Grid Computing clusters a wide variety of geographically distributed resources. 
As a result it can be considered as a promising platform for solving large scale 
intensive problems. For this reason, it can be considered as one of the hottest 
issues in the computer society. A computational intensive application which can 
be gained from such a Grid infrastructure is rendering, a process dealing with 
creating realistic computer-generated image and with many applications ranging 
from simulation to design and entertainment. To implement, however, a rendering 
process in a Grid infrastructure is to perform prediction of its computational 
complexity. This is addressed, in this paper, by using several neural network 
modules, each of which is appropriate for a given rendering process. For this 
reason, initially, a feature vector is constructed to describe with high efficiency 
the parameters affected the complexity of a rendering algorithm. The feature 
vector is estimated by parsing a file on a RIB format. Then, prediction is 
performed using a neural network model. Prediction of three types of rendering 
algorithms is examined; the Ray Tracing, the Radiosity and the Monte Carlo 
irradiance analysis.  

keywords : Grid computing, 3D rendering, neural networks 

1 INTRODUCTION 

Creating realistic computer-generated images is a very useful task for many fields and 
applications, such as simulation, design, research, education, entertainment and 
advertisement. Examples includes, training of air-planes pilots, designing of 3D objects, such 
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as automobiles, or buildings or using molecular modeling in biological systems. Another 
interesting application is the entertainment worlds both in traditional animated cartoons and in 
realistic images for logos [1].  

However, a fundamental difficulty in achieving total visual realism of synthetic images is 
the complexity of the real world. In a real environment, there are many surface textures, 
shadows, reflections and slight irregularities in the surrounding objects. Think of patterns on 
wrinkled cloth, the texture of skin, tousled hair, scuff marks on the floor and chipped paint on 
the wall. All these combine to create a "real" visual experience. The computational costs of 
simulating these effects are high; creating such pictures can take many minutes or even hours 
on powerful computers [2].  

For this reason, computational Grids can be used to implement more efficiently a rendering 
algorithm [3]. This is due to the fact that Grid computing clusters wide variety of 
geographically distributed computational resources, including supercomputers, PC's, PDA's 
and workstations, and presents them as a single unified integrated resource. Grid computing 
has gained popularity in the last decade due to the rapid growth of the Internet as a medium 
for global communication and the development of fast hardware devices and sophisticated 
software. For this reason, it is now considered as one of the hottest issues in the computer 
society [4]. As a result, the rendering problems can be solved more feasibly and in a 
reasonably time and cost using a Grid infrastructure than a single resource supercomputing 
scheme.  

In order to implement, however, a rendering algorithm to a grid infrastructure, two main 
issues should be addressed. The first refers to the parallelization of the rendering process, 
while the second to the way of allocating different tasks to the available resources. 
Parallelization of a rendering process can be performed in frame domain. In this case, each 
frame of the generated video sequence is handled independently from the previous frames and 
thus can be assigned to a different resource for processing. The second issue is solved by 
applying an appropriate scheduling scheme such as the Earliest Deadline First (EDF) [5]. 
However, scheduling algorithms requires prediction of the task workload. Thus one of the 
main issues that should be addressed before implementing a rendering algorithm to a Grid 
infrastructure is to perform prediction of its computational complexity.  

Workload forecasting of a rendering process is an arduous task due to the fact that many 
parameters are involved in the process which affect in different way the computational cost. 
Although several predictors have been proposed in the literature, each of them is appropriate 
for a specific application. This is due to the fact an appropriate model should be developed 
and the inherent parameters, which affects the final outcome should be identified. According 
to the authors' knowledge no work has been proposed in the literature for workload prediction 
of a rendering process, which is an important issue for implementing such applications in 
Grid infrastructure.   

In this paper several neural network modules each of which corresponds to a particular 
environment (i.e., rendering algorithm) is proposed to predict the computational complexity 
of rendering algorithms in creating real life synthetic world. In particular, initially a feature 
vector is constructed which includes appropriate parameters of the rendering process. 
Parameters have been obtained by analyzing the model used to create the rendered images. 
These parameters are extracted by parsing a RIB file format, which provides a general 
structure of describing a synthetic world. RIB format includes information about the object 
geometric primitives (such as cylinder, cone and sphere),  object transformation, object 
material, number of light sources, rendering algorithm parameter so that any detail used for 
creating rendered images is specified. The extracted feature vector of the RIB file is used as 
input to a neural network architecture, which predicts the rendering workload. The use of the 
neural network architecture is due to the fact that the rendering parameters affect the 
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computational cost in a non-linear and complex way. In our experiments three different 
rendering algorithms are investigated, the Ray Tracing, the Radiosity and the Monte Carlo 
irrandiance analysis, each of which are modeled by a different neural network architecture, 
since each rendering algorithm affects the computational complexity in a different way.  

2 SYSTEM OVERVIEW 

An overview of the proposed architecture used to predict the computational complexity of a 
rendering process is depicted in Fig. 1. As can be seen, the architecture consists of three main 
parts; the attribute extraction module, the workload prediction module and the finally the 
scheduler.   

Attribute Selection Module: This module receives as input a file, which describes the 3D 
geometrical model (i.e., the synthetic environment), the algorithm as well as the respective 
parameters used for performing the rendering.  The input file is encoded on the RIB format, 
which provides a general framework for describing the structure of a synthetic world and uses 
the minimum information required of interacting the rendering environment. In the output of 
the module, a feature vector of appropriate attributes is constructed to predict the rendering 
workload. The module consists of two subsystems. The first is responsible for parsing the 
input file (i.e., to identify the parameters that affect the rendering process and the algorithm 
used). In this way, a set of candidate attribute is constructed. The second is responsible for 
selecting the most significant attributes among all candidates.    

Workload Prediction module: This module predicts the workload of a rendering process 
by taking into consideration the feature vector estimated from the previous module. For the 
workload prediction, a feed forward neural network is used, which relates the extracted 
parameters to the computational complexity of the rendering process. 

Scheduler: The third module of the proposed architecture is responsible for scheduling a 
rendering task to the Grid infrastructure, by exploiting information provided by the workload 
prediction module. In this paper, we concentrate on the first two modules, while for the 
scheduler; conventional algorithms are used, such as the Earliest Deadline First (EDF) 
algorithm [5].  

Parsing RIB
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Predictor

Scheduler

Grid
Computing
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Estimated
Workload
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Attribute Selection

Input File

 
Fig. 1. System Overview. 
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3 RENDERING 

Since the workload prediction of a rendering process depends on the specific algorithm 
used for creating the realistic word from the 3D geometrical primitives (models) and their 
respective parameters, it is necessary initially to briefly describe the Rendering algorithms 
used. Due to the complexity of the real word, several rendering techniques have been 
proposed in the literature, each of which is characterized by different properties and 
parameters. Some typical methods adopted are the Ray Tracing, the Radiosity and the Monte 
Carlo Irradiance analysis [1].    

3.1 Ray Tracing 

Although Ray Tracing has been initially proposed as an  algorithm for determining the 
visibility of objects surfaces, it has been easily extended to rendering computer- generated 
images [1], [2]. In its simplest form, the luminosity of a pixel is defined using an illumination 
model at the closest intersection of eye ray with an object. For this reason, we initially 
describe the illumination models adopted and then we concentrate on the ray tracing 
algorithm.  

A) Illumination Models 
The illumination models define how a pixel or a surface is shaded (illuminated) based on 

the position orientation and surface material characteristics as well as the light sources 
illuminated them. A general illumination model is given by the following relation [1]  

 

 akIkIkII n
spdpaa coscos ⋅⋅+⋅⋅+= θ  (1) 

 
The first tem of equation (1), i.e., aakII = , corresponds to the ambient light. The ambient 

light impeaches equally on all surfaces from all directions The aI  factor is the ambient light 
intensity and ak  the ambient reflection coefficient, which is a material property [1].  

The second term, i.e., θcos⋅⋅ dp kI , refers to the Lambertian Reflection also known as 

diffuse reflection. In this illumination model the brightness depends only on the angle θ 
between the normal vector of the surface N and the direction L to the li1ght source. This is 
illustrated in Fig. 2(a) [1].   

The pI  is the point light source intensity and dk  the diffuse-reflection coefficient ranging 

from 0 to 1 and depending on the surface material.  

The third term of (1), i.e., the akI n
sp cos⋅⋅  models the specular reflection, implemented by 

the Phong illumination model [6]. The variable a is the angle between the view point and the 
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Fig. 2. (a) Lambertian Reflection and (b) Specular reflection. 
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direction of reflection (see Fig. 2(b)). This rapid fall off is approximated by the factor ancos , 
where n corresponds to the material specular reflection exponent. For a perfect reflector, n is 
infinite. 

 
B) Recursive Ray Tracing    
  
Recursive ray tracing takes into consideration the reflection and refraction of all objects in 

the scene and recursively estimates the luminosity intensity of a pixel [2]. In particular, 
reflection and refraction rays are considered along with the primary rays come from the eye. 
Shadows can be also included in the algorithm by firing an additional ray from the point of 
the intersection to each of the light sources.  

Each of these reflection and refraction rays may, in term, recursively spawn shadow 
reflection and refraction rays. This is explained in Fig. 3(a), where rays recursively spawn 
another rays. In this way the rays form a ray tree such as that of Fig. 3(b). A branch is 
determined if the reflective and refractive rays fail to intersect an object, if some user's 
specified maximum depth is reached or if the system runs out of storage. The tree is evaluated 
from bottom to up and each node's intensity is computed as a function of each children's 
intensity [7], [8].  

From the aforementioned analysis, it is clear that the basic parameters which affect a ray 
tracing scheme are the following; the number of light sources since each ray is related to a 
light source, and the depth of the tree (see Fig. 3(b)) used in the recursive implementation. 
Beyond a predetermined limit of reflections/ refractions the rays no further spawn into other 
rays. In addition, the computational complexity is also affected from the type of the material 
used, which determines the type of the illumination model. 

3.2 Radiosity 

Although ray tracing does an excellent job of modeling specular reflection, it still makes 
use of a directionless ambient lighting term to account for all other global lighting 
contributions. Approaches based on thermal engineering models for the emission or reflection 
of radiation eliminate the need for the ambient lighting term by providing a more accurate 
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Fig. 3. (a) Rays recursively spawn other rays. (b)The ray tree constructed. 
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treatment of interobject reflections. In particular, all energy emitted or reflected by every 
surface is accounting for by its reflection from or absorption by other surfaces. The rate at 
which energy leaves a surface called its radiosity and is the sum of rates at which the surface 
emits energy and reflects or transmits it from that surface to other surfaces [9], [10].  

Imagine breaking up the environment into a finite number of discrete patches, each of 
which is assumed to be finite size, emitted and reflected light uniformly over each entire area. 
Then, if we consider each patch to be diffuse emitter and reflector we have that  
 

 ∑+=
≤≤

−
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where iB , jB  are the radiosities of the ith and jth patch. iE  is the rate at which light is emitted 

from the ith patch, iρ  is the patch reflectivity and ijF
−

 is the form or configuration factor, 

which specifies the fraction of energy leaving the entirety of patch j that arrives at the entirety 
of patch i taking into account the shape and relative orientation of both patches and presence 
of any obstructing patches. Finally, iA  and jA  are the respective patch areas.  

Based on the previous equation, we can estimate the interaction of light among all the 
patches in the environment, by solving a linear system of equations.  

The finer the patch parametrization is, the better the results are at the expense of the 

increased computational time for 2n , where n is the number of patch. Other parameters which 
affect the computational load are the type of patches, that is if it is an emitter or transceiver 
surface, and the method used for estimating the Form factors. 

4 MONTE CARLO IRRADIANCE APPROACH 

Finite element radiosity has some big drawbacks, almost all of which are related to the fact 
that it has to pre-mesh the entire scene. First, it gets inaccuracies for some specific surfaces. 
Furthermore, it can use lots of time and memory when you have many geometric primitives, 
especially if your objects are made out of lots of little polygons or subdivision meshes.  

The newer Monte Carlo irradiance approach has a different set of tradeoffs. Rather than 
enmeshing the scene and solving the light transport up front, the Monte Carlo approach is 
"pay as you go". As it is rendering, when it needs information about indirect illumination, it 
will do a bunch of extra ray tracing to figure out the irradiance. It will save those irradiance 
values, and try to reuse them for nearby points [11]. 

The Monte Carlo approach works just fine with almost all surfaces and trim curves. It does 
not unpack procedural primitives until they are really needed. It takes longer than radiosity for 
small scenes, but it scales better and should be cheaper for large scenes.    

4.1 Other Factors Affecting Rendering Performance 

A) Texture Mapping 
 
Texture mapping is the technique to map an image, either synthesized or digitized on a 

surface. The image is called a texture map and each individual elements are often called 
texels. A simple approach starts by mapping the four corners of a pixel onto the surface. For 
bicubic patch, this mapping naturally defines a set of points in the surface coordinates. Then, 
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the pixels corner points in the surface coordinate space are mapped into the texture coordinate 
space [12], [13].      

 
B)  Shading       
   
The simpler shading model for a polygon is constant shading, also known as faceted 

shading. This approach applies an illumination model once to determine a single intensity 
value that it is then used to shade the entire polygon.  

Interpolating shading eliminates intensity discontinuities appear by constant shading. In 
particular, in this technique we assume that the normal for each mesh vertex is known. 
Alternatively, if the vertex normal is not stored and cannot be detected directive from the 
actual surface, it can be estimated by averaging the surface normal over all polygonal facets 
sharing the same vertex.  Then, the vertex intensity is estimated using the vertex normal and 
appropriate illumination model. Finally, each polygon is shading by linear interpolation of 
vertex intensities along each edge and then between edges along each scan line [14].  

5 ATTRIBUTE PARSING 

One of the most important issue, affecting the prediction accuracy of the workload of a 
rendering process is the attributes used for creating the realistic synthetic images.  These 
attributes are evaluated through an input file encoded by the RIB format which provides a 
general framework for describing a synthetic environment. For this reason, in subsection 5.1, 
we discuss the general concepts of the RIB format, while in subsection 5.2 we mention the 
most significant attributes and their respective organization.    

5.1 The RIB format 

The purpose of the RIB format is to provide the general structure of a synthetic world and 
to use the minimum information required of interacting the rendering environment. The RIB 
format provides the possibility of describing shape, geometric primitives (e.g., a cone, a 
sphere), object transformations (e.g., rotation, translation) surface material characteristics (and 
thus the respective illumination model), light sources (e.g., the number and the type), 
parameters of the rendering process (e.g, max number of patches in the radiosity method) and 
finally other rendering characteristics such as the type of texture mapping, the shadow 

Table 1. An example of a RIB file format. 
 

Projection "perspective" "fov" 40 
Format 200 150 1 
 
Option "render" "integer max raylevel" [4] 
     WorldBegin 
 
          Cylinder 1 -1 1 360 
           Surface "shiny" "Kd" [0.2]  
 
     WorldEnd 
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algorithm and so on.  Using this information, we can describe any synthetic world and extract 
the basic parameters, which affect the prediction workload of a rendering algorithm. 

Table 1 presents an example of a RIB file in which the synthetic world comprises only one 
cylinder. The surface cylinder is characterized by diffuse reflection. As a result, ambient and 
specular reflection are not represented (first and third term of (1)) in this particular example. 
The statement "option" includes rendering parameters which affect the whole synthetic world. 
For example, in Table 1, we define the depth level (see Fig. 3(b)) of the ray tracing algorithm. 
Similar to the "option" statement is the "attribute" statement with the difference that the latter 
refers to specific pieces of geometry instead of the entire rendered frame. Finally, the 
"format" determines the image resolution. 

5.2 Attribute selection 

As can be seen from the above, the RIB format provides a general framework for extracting 
and evaluating the basic attributes, which affect the workload of a rendering process. Table 2 
presents some basic attributes, which can be estimated by parsing RIB format statements. In 
this table the parameters have been grouped into four different categories. The first refers to 
attributes which are independent from the rendering algorithm used, while the other three 
corresponds to each of aforementioned described rendering techniques (see section 2). 

6 WORKLOAD PREDICTION 

Since the extracted attributes affect the computational load in a non-linear and complex 
way, in our case, the rendering workload is modeled using a continuous non-linear function  
 
 )(xcgy = , },,{ 1 Mc ΠΠ∈ L  (3) 
 
where vector x includes the rendering attributes (some of them presented in Table 2) and y  is 
the respective computational cost. Index c of function )(⋅cg  corresponds to a particular type of 
rendering algorithm iΠ . This is due to the fact that different input-output relations are 
expected for different types of rendering methods since each of them uses different 
methodology for creating realistic images from the synthetic 3D models. In our experiments, 
M=3 different types of rendering algorithms have been evaluated; the ray tracing, the radiosity 
method and the Monte Carlo irrandiance since, as mentioned above, these are the most 
common used techniques for creating a synthetic world.     

The main difficulty of applying equation (3) is that function )(⋅cg is actually unknown. 
Modeling of function )(⋅cg  is performed through a feedforward neural network architecture, 
since it can approximate any non-linear function within any degree of accuracy ([12], pp. 208-
213, 249). In our case, M feedforward neural networks are implemented, each of which 
corresponds to a specific environment, i.e. to a specific rendering algorithm. In this case 
function )(⋅cg  is approximated by  

 
 ∑ ⋅=

l
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where we assume one hidden layer of q neuron with activation function )(⋅f  and a linear 
output neuron. Weights lv connect the hidden neurons with the output ones, while lu  are the 
output of the hidden neurons. Matrix W  includes the network weights of the hidden neurons, 
while x corresponds to the attribute (feature) input vector. Finally, )(ˆ xcg  indicates the 
approximate of function )(⋅cg  by the neural network architecture.  

In order to estimate the network weights lv  and W , a training set of N samples is used, 
which contains pairs of the form ),( ii yx . Vector ix  includes the parameters of a specific 
rendering environment, while iy  corresponds to the respective workload obtained by these 
parameters. The training algorithm minimizes the mean squared value of the error for all 
samples in the training set 

 

 ∑ −=

=

N

i
ii gyC

1

2)}({
2
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A second order method has been used, in our case, for training the network based on a 

modification of the Marquardt-Levenberg algorithm. This method has been selected due to its 
efficiency and fast convergence, since it was designed to approach second order training 
speed without having to compute the Hessian matrix. To further increase the generalization 
performance of the network, the cross validation method has also been applied. Particularly, 
the available data are divided into two subsets; the one used for training and the one used for 
evaluating the network performance (validation set). The error on the validation set is 
monitored during the training process and when it increases for a number of iterations, the 
training is stopped.   

Table 2.  Some attributes used as inputs to the neural network predictor architecture. 
 

Common Parameters Ray Tracing Radiosity Monte Carlo Irrandiance 
Frame Resolution Maximum number 

of recursive rays 
Number of 

radiosity steps 
Maximum error metric 

Number of Samples 
per pixel 

Minimum shadow 
bias 

Minimum number 
of samples per patch 

(Form Factors) 

Number of rays used to  
estimate irradiance 

Number of Light 
Sources 

Object visibility 
(reflection, 
refraction) 

Patch size Maximum pixel distance 
(Forces recomputation) 

 
Surface complexity 
(Number of meshes) 

Surface shadow 
(none, opaque, 

shade) 

Type of Radiosity 
calculations on 

surfaces 
(surface receives 

and/or shoots 
energy) 

 

Surface material 
(specular, diffuse 

reflection) 

   

Type of Texture 
mapping used 
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7 EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of the proposed neural network architecture for 
predicting the workload of rendering algorithms by applying several real life experiments. All 
experiments have been obtained by parsing RIB file format corresponding to synthetic 
images. The rendering engine that we have used is the BMRT2.6 for the Linux operation 
platform. BMRT supports RIB format to describe a synthetic world.  

The three types of the rendering algorithms, described in section 2, have been used, i.e., the 
ray tracing, the radiosity and the Monte Carlo irrandiance analysis. For each rendering 
algorithms the attributes of Table 2 have been used along with the common rendering 
parameters, such as the image resolution, number of pixel samples, material type and so on.  

Fig. 4(a) presents the computational complexity for 25 different experiments obtained using 
the Ray Tracing rendering algorithm. In this figure, we have also added the predicted 
computational load as obtained by the respective neural network architecture. The respective 
results provided for the other two rendering algorithms are presented in Figs. 4(b,c). In all 
cases the computational cost has been measured on a PC AMD Athlon 1.60GHZ of physical 
memory 128MB of Linux Suse 2.4 operation system. In these Figures the computational cost 
has been normalized with respect to a reference RIB file. In our implementation, the images 
of Fig. 6 have been used as reference image. In all case a feedforward neural network has 
been used with one hidden layer, one output neuron of linear activation function and 15 
hidden neurons. As can be seen good prediction accuracy is accomplished in all cases.  

An alternative way to illustrate the prediction performance is to use the fractile diagrams or 
the Q-Q (Quantiles-Quantiles) plots. According to this method the actual cost is plotted versus 
the predicted ones. Therefore, perfect prediction lies on a line of 450 slope. The advantage of 
this method is that it shows all prediction differences with the same accuracy, regardless of 
the value of actual computational cost. It can be seen in Fig. 5 that the Q-Q plots are  close to 
the line of perfect fit, meaning that the proposed model is good predictor of rendering 
computational complexity.  

Fig. 6 presents the rendered images obtained using different parameters of the Monte Carlo 
irradiance method (see Figs. 6 (a,b)) and the Ray Tracing scheme (Fig. 6(c)) to show the 
affect of different rendering algorithm and parameters on the visual content of the final 
rendered image.  

An objective measure for evaluating the prediction accuracy is to compute the relative 
prediction error with respect to the actual data E , 
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Table 3. Average prediction accuracy over all experiments conducted for the three types of 
rendering algorithms.  

 Ray 

Tracing 

Radiosity Monte Carlo 

Average 8.668  10.31  8.10  

Max 18.91 21.88 20.00 
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where N  is the total number of experiments and iy , iŷ  the actual and the predicted 
computational cost at the ith experiment. Table 3 presents the relative prediction error for the 
three types of rendering algorithms. In this Table, we have also present the maximum error 
( ∞=p - norm).  

8 CONCLUSIONS 

In this paper, we apply a neural network architecture for predicting the workload of a 
rendering process. Three different types of rendering algorithms have been investigated, the 
Ray Tracing, the Radiosity and the Monte Carlo irrandiance. For each rendering type a 
different neural network is constructed. The attributes used for the computational prediction 
are extracted by parsing a RIB file format, which provides an efficient and easy way to 
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Fig. 4. The actual and the predicted computational cost of various experiments for three 
different types of rendering algorithms. (a) Ray Tracing algorithm, (b) Radiosity algorithm and 
(c) the Monte Carlo irrandiance.  
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Fig. 5. The Q-Q (Quantiles-Quantiles) plots for (a) Ray Tracing algorithm, (b) Radiosity 
algorithm and (c) the Monte Carlo irrandiance.  
 

   
(a)  (b) (c) 

Fig. 6. A synthetic world using three different rendering options. (a,b) The Monte Carlo 
irradiance algorithm. (c) The ray tracing algorithm.    
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describe a synthetic world. Simulation results illustrates a good prediction accuracy and 
therefore the proposed scheme can be used as input to a scheduling process, which assigns the 
rendering tasks to the Grid infrastructure.  
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