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Abstract Future Grid Networks should be able to provide Quality of Service (QoS) guar-
antees to their users. In this work we examine the way Grid resources should be
configured so as to provide deterministic delay guarantees to GuaranteedService
(GS) users and fairness to Best Effort (BE) users. The resources are partitioned
in groups that serve GS users only, or BE users only, or both types of users with
different priorities. Furthermore, the GS users are registered to the resources
either statically or dynamically, while both single and multi-Cpu resources are
examined. Finally the proposed resource configurations for providingQoS are
implemented in the GridSim environment and a number simulations are executed.
Our results indicate that the allocation of resources to both types of users,with
different priorities, results in fewer deadlines missed and better resources utiliza-
tion. Finally benefits can be derived from the dynamic registration of GS users
to the resources.

Keywords: computational resources configurations, QoS scheduling, dynamic and static reg-
istration, single and multi-Cpu resources
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1. Introduction

Today’s Grids provide only a best effort service to the users and theirtasks,
which is insufficient if a Grid is to be used for real world commercial appli-
cations. Users can be categorized in two types. Some users are relatively
insensitive to the performance they receive from the Grid. Even though these
Best Effort (BE) users do not require performance bounds, it is desirable for the
Grid to allocate resources to them in a fair way. Besides BE users, Grids also
serve users that do require a guaranteed QoS. These users will be referred to as
Guaranteed Service (GS) users. By the term "user" we do not necessarily mean
an individual user, but also a Virtual Organization (VO), or a single application,
using the Grid infrastructure.

In this work we examine the way grid resources should be configured so
as to provide deterministic delay guarantees to GS users and fairness to BE
users. For the GS users, the objective is to guarantee an upper bound on the
maximum delay of the submitted tasks. For BE users, we aim at attaining a
fair scheduling procedure. The resources are configured to serveGS users only,
or BE users only, or both types of users with different priorities. Furthermore
the GS users are registered either statically or dynamically to the resources,
while both single and multi-Cpu resources are examined. Finally the proposed
resources configurations are implemented in the GridSim environment and a
number simulations are executed. Our results indicate that the allocation of
resources to both types of users, but with different priority, results in fewer
deadlines missed and better resource utilization. Also benefits can be obtained
by dynamically varying the configurations of the resources.

A number of scheduling algorithms have been proposed so far, both for
single- and for multi-processor systems, some of which have also been adapted
for use in Grids. Furthermore lately, a number of scheduling schemes that are
specific to Grids have also been proposed [4], [5] and [3].

QoS in Data Networks has been extensively studied. The Internet Engineer-
ing Task Force (IETF) has proposed the Integrated Services (IntServ) [7] and the
Differentiated Services (DiffServ) architectures [8] to support QoS innetworks,
and differentiate traffic in terms of bandwidth, latency and other data transfer
parameters. Relatively recently QoS in Grids has also started gaining attention.
Two important efforts addressing this issue were the General-purpose Architec-
ture for Reservation and Allocation (GARA) [9] and the Grid QoS Management
(G-QoSM) architecture [11]. These works propose QoS schemes forGrids that
take into account the network, computational and storage resources. GARA is
the oldest framework for supporting QoS in Grids. This framework provides
guarantees to an application requesting specific end-to-end QoS characteris-
tics. G-QoSM is a newer QoS framework for Grids, which is more actively
developed, following the recent trends in Grid Networks.
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In this work we build on the QoS framework for Grid computing first pre-
sented in [13]. This framework provides hard QoS, in terms of delay bounds
guarantees given to each user, without using resource reservations. The users
and the resources, simply, agree upon the task load the former will generate and
the latter will serve. On the other hand the GARA and G-QoSM frameworks
reserve computational resources quantitatively, either by reserving a number of
CPUs in a resource or by reserving a percentage of a CPU’s capacity (Dynamic
Soft Real-time scheduler - DSRT [10]). Under the QoS framework presented
in [13] we propose and evaluate the categorization of computational resources
so as to serve either GS, or BE, or both types of users and examine static and
dynamic registration of GS users to the resources.

The remainder of the paper is organized as follows. In section 2 we report
previous work. In section 3 we describe how the resources can be configured in
order to provide QoS guarantees. In section 4 we present the simulation envi-
ronment, the parameters and the results of our simulations. Finally, conclusions
are presented in section 5.

2. Grid QoS Framework Description

We consider a Grid consisting of a number of users and a number of resources.
There are two kind of users; Guaranteed Service (GS) and Best Effort (BE) users.
The tasks originating from these users are of GS or BE type, respectively. Also
there are various types of resources based on the types of tasks they serve (GS or
BE or both) and the priority they give to each type. Our framework gives delay
bound guarantees to GS users and fairness to BE users. We assume thata task
executing at a resource is non-divisible and non-interruptible (non-preemptable)
and thath the local scheduler of every resource applies Weighted Fair Queuing
(WFQ) to the queued GS tasks. We initially describe our framework assuming
that every machine has one CPU, and later extend it to the multi-CPU machine
case.

The GS users are leaky bucket constrained, and so they follow a (ρ, σ) con-
strained task generation pattern. A GS user must first register to a resource,
before they can actually use it, while he can register to a number of resources.
During this registration the specific values of his task generation pattern is
agreed (Figure 1).

Based on [13] in order for a GS useri to register to a resourcer the conditions
(1) and (2) must be met:

ρir ≤ gir(t) = Cr·wir∑Nr(t)+1

k=1
wkr

, (1)

and

Jmax
ir ≤ Jmax

r . (2)
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Figure 1. The (ρ, σ) constrained GS users in the Grid.

The ρir is the long term task generation rate of the GS user. Theσir is the
maximum size of tasks (burstiness) that the GS user will ever send, in a very
short time interval, to the specific resource. FurthermoreCr is the computing
capacity of resourcer, Nr(t) is the number of GS users already registered to
the resourcer at timet, andwir is the weight of the GS useri for using the
resourcer. Also Jmax

ir is that the maximum task length the GS useri will ever
send to the resourcer, whileJmax

r is the resource’sr maximum acceptable task
length. Finally the condition (1) must hold both for a new and for the already
registered, at a resource, GS users. If both (1) and (2) hold then theGS user can
register to the resource; otherwise, the registration fails and the GS user must
search for another resource.

When a GS useri creates a taskj, he searches for the best suitable resource
r, to which it has already registered. Specifically he first checks whetherthe
agreed (ρir, σir) constraints are satisfied. Specifically we denote byJir(t), i =
1, 2, · · · , N the total tasks workload submitted by GS useri to resourcer in the
interval [0, t]. We will say that a GS useri is (ρir, σir) controlled with respect
to resourcer, if the following condition is valid:

Jir(t) < σir + ρir · t,∀t > 0 (3)

If one or more new GS user’s tasks invalidate (3), then the GS user must locally
withhold these tasks for a time periodTij until (3) becomes valid again. This
condition ensures that the user remains leaky bucket constrained. Furthermore
the user checks if the task’sj lengthI

j
i is not exceed the one agreed:

I
j
i ≤ Jmax

ir . (4)

After these checks in order for the taskj to be submitted for execution to the
resourcer the task must not miss its deadlineD

j
i . In [13] we showed that if

the conditions (1) and (3) hold then the delay a task will incur from the time it
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is submitted by the user, until it finishes its execution at a selected resource is
at most:

σir

gir
+

Jmax
ir

gir
+ Jmax

r

Cr
, (5)

wheregir is the minimum value ofgir(t) that does not invalidates (1) for any
registered user. To this delay we must add the total communication delaydir

for transferring the task to the selected resource and the total timeTir the GS
user withholds the task in its local queue (Figure??). So the delay boundDj

i

equals to:

D
j
i ≤ Tir + dir + σir

gir
+

Jmax
ir

gir
+ Jmax

r

Cr
. (6)

Finally when the GS user hasn’t any more tasks to send to the Grid, he can
either do nothing or he can unregister from his registered resources. In the latter,
dynamic, case the other GS users are infromed for the user’s unregistration and
they can try to register to these resources.

On the other hand for BE users, we aim at attaining a fair scheduling pro-
cedure. Based on [2]and [12] we proposed in [13] the Fair User andTask
Scheduling (FUTS) algorithm, which tries to be fair both for the users and for
the tasks.

2.1 Resources Configurations

We distinguishes four types of resources: GS, BE, GSBE EQUAL and
GS BE PRIORITY. GS resources handle only tasks originating from GS users.
When a GS task arrives at a GS resource, it is queued at the local WFQ scheduler.
When a machine is freed, the local WFQ scheduler selects the next GS task for
execution. BE resources handle tasks originating only from BE users. The
arriving tasks are placed in a queue and served following a First Come First
Served (FCFS) policy to the first available machine. GSBE EQ. resources
handle tasks originating from both GS and BE users. GS tasks are served
using a local WFQ scheduler as in the GS resources. Each arriving BE task is
considered as belonging to a new user, who wants to register to the resource. So
a BE task is queued in the local WFQ scheduler only if the condition of Eq. (1)
holds for all the registered users. In this case the number of registered users is
increased by one and when the BE task finishes execution it is correspondingly
decreased by one. If (1) does not hold for at least one registered user then the task
is rejected and a failure notice is returned to the originating user. GSBE PR.
resources again handle tasks originating from both GS and BE users, but tasks
are not handled in the same way. GS tasks are handled by the local WFQ
scheduler, while BE tasks are placed in a FCFS queue. When a machine is
freed the tasks in the local WFQ scheduler are handled first. If there areno
such tasks then the BE tasks from the FCFS queue are served. A GSBE PR.



6

resource is characterized as preemptive if upon the arrival of a GS task, a BS
task currently under execution is paused and replaced by the new GS task;
otherwise the GSBE PR. resource is characterized as non-preemptive. Also,
a BE task is scheduled to a GSBE EQ. or GSBE PR. resource only when its
size is smaller than the resource’s maximum acceptable task size. Finally when
a GSBE PR. non-preemptive resource is used, the delay bound for GS tasks
of Eq. (6), becomes:

D
j
i ≤ Tir + dir + σir

gir
+

Jmax
ir

gir
+ Jmax

r

Cr
+ Rr, (7)

whereRr is the residual time for the BE task found at the resource (if any) to
complete execution. Thus,

Rr ≤
Jmax

r

Cr
. (8)

In all other resource types (namely, GS, GSBE PR. preemptive)Rr equals to
0.

Furthermore the proposed framework can easily be extended to the case
of resources that consist of many machines-CPUs, provided that some of the
definitions and conditions given earlier are appropriately modified. The total
computational capacityC ′

r of a multi-machine resource’sr is expressed as:

C ′

r =
∑M

j=1
Crj , (9)

whereCrj is the computational capacity of machinej, andM is the total
number of machines (CPUs) in the resource. However, in the multi-machine
resources case theCr used in Eqs. (1) and (6) is not always equal with the
C ′

r. Furthermore, we assume that the local scheduler assigns tasks to the first
available machine-CPU, in a round-robin manner.
In (1), gir(t) is the average service rate the resourcer guarantees to provide to
useri. SinceC ′

r is the total service rate the user has access to from the resource,
Cr in Eq. (1) has to be replaced byC ′

r, yielding

ρir ≤ gir(t) =
wir·

∑M

j=1
Crj

∑Nr(t)+1

k=1
wkr

(10)

Since tasks are non-divisible, the resource cannot use its total computational
capacity to process a job. The worst case is obtained when a task is assigned to
the machine (CPU) with the lowest computational capacityCmin

r = minJ Crj .
Therefore,Cr in Eq. (6) and in all the other delay bounds given in Section III
has to be replaced byCmin

r . For example, Eq. (6) becomes:

D
j
i ≤ Tir + dir + σir

gir
+

Jmax
ir

gir
+ Jmax

r

Cmin
r

. (11)
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3. Simulation Results

In our simulations we used realistic parameters based on [14]. Specifi-
cally in [14] a thorough analysis of the tasks inter-arrival times, the waiting
times at the queues, the execution times, and the data sizes exchanged at the
kallisto.hellasgrid.gr cluster, which is part of the EGEE Grid infrastructure,
were presented and analytic models were proposed. So based on these results
in our experiment we used 3 GS users and 2 BE. The GS users had the charac-
teristics presented in Table 1 and the BE users the characteristics presented in
Table 2.

Table 1. GS user task lengths and inter-arrival times used in our simulations

User Characteristic Value

U1 Task Length 10000 MI
U2 Task Length 1700 MI
U3 Task Length 10 MI
U1 Task Inter-arrival 10 secs
U2 Task Inter-arrival 60 secs
U3 Task Inter-arrival 110 secs
U1 ρ 10000/10 = 1000 MIPS
U2 ρ 1700/60 ≈ 30 MIPS
U3 ρ 10/110 ≈ 0.1, we used 1 MIPS
U1 σ 50000 MI
U2 σ 8500 MI
U3 σ 50 MI

Table 2. BE users characteristics

User Characteristic Value

U4 Task Length 10000 MI
U5 Task Length 10000 MI
U4 Task Inter-arrival 100, 80, 60, 40, 20, 10, 1 secs/task

or or
Task Generation Rate 0.01, 0.0125, 0.017,

0.025, 0.05, 0.01, 1 tasks/sec

U5 Task Inter-arrival 100 tasks/sec
or or

Task Generation Rate 0.01 tasks/sec

In our simulations we use 3 clusters/resources. For the single-CPU case the
resource capacity of R1 is 1015 MIPS, of R2 is 680 MIPS and of R3 is 340
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MIPS. For the multi-CPU case all the CPUs have capacity equal to 34 MIPS and
R1 has 30 CPUs, R2 has 20 and R3 has 10. Furthermore in our simulations we
used the resource type scenarios presented in Table 3. When the BE resources
scenario is used then all the users (U1, U2 ,U3) are BE users with the exact
same characteristics as the corresponding GS users (U1, U2 ,U3).

Table 3. Resources scenarios

Scenarios R1 R2 R3

GB GS GS BE
GBE GSBE EQ. GSBE EQ. BE
GBP GSBE PR. n.pr. GSBE PR. n.pr. BE
BE BE BE BE

The meta-scheduler uses a two-phase scheduling procedure for BE users,
with a time window equal to 1 second. More specifically, the Earliest Dead-
line First (EDF) algorithm is used for the queuing phase and the Earliest Start
Time (EST) for the resource assignment phase. Also in our simulations all the
users, GS and BE, have equal deadlines. Specifically the deadline usedin our
simulations is the maximum deadline calculated for a GS user, based on (6)
or (11) and adding a small overhead in order to take into account theT andd

(communication) delays. Furthermore, in our simulations we assume that the
resources, the users and the meta-scheduler communicate directly with links
of equal bandwidth, while the propagation delay is equal to 0. Finally in the
static case all the users stop producing new tasks at the same time, while in
the dynamic case the U1 user stops producing new tasks first. This way in
the dynamic case U1 unregisters from his registered resources and U2,U3 GS
users can try to register to these. In our simulations we recorded the following
performance metrics:

the number of tasks that miss their non-critical deadlines.

the resource’s utilization, defined as the total time a resource is used for
the execution of tasks over the total time of the simulation.

the number of failed tasks.

3.1 Resources Configurations

A number of simulations where conducted to evaluate the different resources
configurations. We used the configuration scenarios presented in Table3. In
our simulations we used 5 users (3 GS and 2 BE), 3 resources and a meta-
scheduler. Finally using these parameters of Table 1 and Table 2 U1 registers
to R1, while U2 and U3 register to R2.
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First in Figure 2 we show that our framework succeeds in providing QoS
to the GS users. Figure 2 presents the percentage of the per user numberof
tasks that miss their non-critical deadlines over the total number of tasks each
user creates. This percentage is presented for the various resourcescenarios
and tasks generation rates of the BE user U4 (0.05, 0.1, and 1 tasks/sec). We
observe that in all cases the GS users (U1, U2, U3) do not miss their deadlines.
Only when the BE resource scenario is used, where the GS users are treated as
BE users, then all the users miss many of their deadlines. In the GBE and the
GBP scenarios (Table 3) fewer tasks miss their deadlines, however in the GBE
resource scenario many tasks fail (Figure 3). In the GBE resource scenario
when a BE task arrives at a GSBE EQ. resource, but cannot be scheduled
because the constraints of the already registered GS uses cannot be guaranteed,
then the task is dropped (fails). So the GBP resource scenario seems the best
in terms of the number of tasks sucessfully scheduled without missing their
deadlines.

0%

20%

40%

60%

80%

100%

G
B

/0
,0

5

G
B

/0
,1

G
B

/1

G
B

E
/0

,0
5

G
B

E
/0

,1

G
B

E
/1

G
B

P
/0

,0
5

G
B

P
/0

,1

G
B

P
/1

B
E

/0
,0

5

B
E

/0
,1

B
E

/1

Scenario/Task Rate

N
o
n
-C

ri
ti
ca

l 
D

ea
d
li
n
es

 E
xp

ir
ed

  
  
  
  
 .
 

p
er

 U
se

r

User U1 User U2
User U3 User U4
User U5

Figure 2. Non-critical deadlines expired per
user
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Figure 3. Failed tasks per user

In Figure 4 the utilization per resource is presented again for the same sce-
narios as before. The resources are utilized more in the GB resource scenario
and this is due to resource R3 that handles exclusively BE tasks. In the other
resource scenarios, all resources can serve tasks from all usersand as a result
the resources utilization is smaller. The smallest utilization occurs in the GBE
scenario, but this is the result of the failed tasks, so the GBP scenario seems
the best in terms of resources utilization (Figure 5 ). Finally, in Figure 6 the
standard deviations of the resources utilization are presented. The standard
deviation is high in the GB scenario, where the R3 resource is more utilized
than the R1 and R2 resources, while it is very small for the GBP scenario.

3.2 Static against Dynamic Registration

We conducted a number of experiments to evaluate the benefits of the static
against the dynamic registration of the GS users to the resources. In our ex-
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Figure 6. Standard deviation of resource utilization

periments we decreased the number of tasks the U1 generates, this way at a
point at time, during an experiment, U1 stops producing new tasks and so R1
becomes available for use from the other GS users. When static registration
is used, U2 and U3 users do not take advantage of resource R1, while when
dynamic registration is used U1 unregisters from R1 and U2, U3 register to it.

In our experiments we observe the benefits of the dynamic registration mainly
in the GBE resource scenario. Then fewer tasks miss their non-critical deadline
(Figure 8) and fewer tasks fail (Figure 10), than when static registrationis used
(Figure 7, Figure 9). This happens because in the dynamic registration case the
BE tasks of user U5 can also use the R1 resource, when the U1 unregisters from
it. Furthermore in the GBE scenario R1’s utilization increases because the BE
tasks of U5 are executed there, however the utilization increases and forR2,R3
because of fewer failed tasks. Finally in the GBP scenario the benefits of the
dynamic registration are very few, both in terms of the number of tasks missing
their deadlines and in terms of the resources utilizations.

3.3 Multi-Cpu Resources

We conducted a number of experiments using the multi-Cpu resources. Two
sets of experiments were conducted. In the first the delay bounds givento the
GS users and the deadlines of all the users tasks are calculated based on(6),
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Figure 7. Non-critical deadlines expired per
user in the static case
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Figure 8. Non-critical deadlines expired per
user in the dynamic case
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Figure 9. Failed tasks per user in the static
case
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Figure 10. Failed tasks per user in the dy-
namic case

while in the second set based on (11). In Figure 11 and Figure 12 we show that
in case condition (6) is used then most of the tasks the users create lose their
deadlines. So in the multi-Cpu case the (11) is the correct formulation of the
delay bound given to the GS users.
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Figure 11. Non-critical deadlines expired
per user using condition (6)
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Figure 12. Non-critical deadlines expired
per user using condition (11)
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4. Conclusions

In this work we examine the way Grid resources should be configured so
as to provide deterministic delay guarantees to Guaranteed Service (GS) users
and fairness to Best Effort (BE) users. A number of simulations are conducted,
which indicate that the resources which server both types of users provide better
results, in terms of deadlines missed and resources utilizations. Finally we show
that benefits exist from the dynamic registration of the GS users to the resources.
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