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Abstract

Keywords:

Future Grid Networks should be able to provide Quality of Service (Qo&)-gu
antees to their users. In this work we examine the way Grid resourcakidie
configured so as to provide deterministic delay guarantees to Guar&gracke
(GS) users and fairness to Best Effort (BE) users. The ressareepartitioned
in groups that serve GS users only, or BE users only, or both typeseof with
different priorities. Furthermore, the GS users are registered to Hoeinees
either statically or dynamically, while both single and multi-Cpu resources are
examined. Finally the proposed resource configurations for proviQivg are
implemented in the GridSim environment and a number simulations aretegecu
Our results indicate that the allocation of resources to both types of wgérs,
different priorities, results in fewer deadlines missed and better ressutiliza-
tion. Finally benefits can be derived from the dynamic registration of @8us
to the resources.

computational resources configurations, QoS scheduling, dynaohgatatic reg-
istration, single and multi-Cpu resources



1. Introduction

Today’s Grids provide only a best effort service to the users andtteks,
which is insufficient if a Grid is to be used for real world commercial appli-
cations. Users can be categorized in two types. Some users are relatively
insensitive to the performance they receive from the Grid. Even thowggeth
Best Effort (BE) users do not require performance bounds, itdsaae for the
Grid to allocate resources to them in a fair way. Besides BE users, Grals als
serve users that do require a guaranteed QoS. These users wittveddo as
Guaranteed Service (GS) users. By the term "user" we do not reitgssean
an individual user, but also a Virtual Organization (VO), or a singldiegfion,
using the Grid infrastructure.

In this work we examine the way grid resources should be configured so
as to provide deterministic delay guarantees to GS users and fairness to BE
users. For the GS users, the objective is to guarantee an upper bodnel o
maximum delay of the submitted tasks. For BE users, we aim at attaining a
fair scheduling procedure. The resources are configured to&&wsers only,
or BE users only, or both types of users with different priorities. Funtioge
the GS users are registered either statically or dynamically to the resources,
while both single and multi-Cpu resources are examined. Finally the proposed
resources configurations are implemented in the GridSim environment and a
number simulations are executed. Our results indicate that the allocation of
resources to both types of users, but with different priority, result®wef
deadlines missed and better resource utilization. Also benefits can be dbtaine
by dynamically varying the configurations of the resources.

A number of scheduling algorithms have been proposed so far, both for
single- and for multi-processor systems, some of which have also begiedda
for use in Grids. Furthermore lately, a number of scheduling schemes¢hat a
specific to Grids have also been proposed [4], [5] and [3].

QoS in Data Networks has been extensively studied. The Internet Emgine
ing Task Force (IETF) has proposed the Integrated Services (Inf3gand the
Differentiated Services (DiffServ) architectures [8] to support Qa&imorks,
and differentiate traffic in terms of bandwidth, latency and other data transf
parameters. Relatively recently QoS in Grids has also started gaining attention
Two important efforts addressing this issue were the General-purpobéda-
ture for Reservation and Allocation (GARA) [9] and the Grid QoS Managégme
(G-QoSM) architecture [11]. These works propose QoS schem&yifids that
take into account the network, computational and storage resourcd®A GA
the oldest framework for supporting QoS in Grids. This framework pexid
guarantees to an application requesting specific end-to-end QoS telhigrac
tics. G-QoSM is a newer QoS framework for Grids, which is more actively
developed, following the recent trends in Grid Networks.
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In this work we build on the QoS framework for Grid computing first pre-
sented in [13]. This framework provides hard QoS, in terms of delay d®un
guarantees given to each user, without using resource reservalioasisers
and the resources, simply, agree upon the task load the former will genearch
the latter will serve. On the other hand the GARA and G-QoSM frameworks
reserve computational resources quantitatively, either by reservimgber of
CPUs in aresource or by reserving a percentage of a CPU's capagitguhic
Soft Real-time scheduler - DSRT [10]). Under the QoS framework ptede
in [13] we propose and evaluate the categorization of computationalroesou
so as to serve either GS, or BE, or both types of users and examine sthtic an
dynamic registration of GS users to the resources.

The remainder of the paper is organized as follows. In section 2 wetrepor
previous work. In section 3 we describe how the resources can figwad in
order to provide QoS guarantees. In section 4 we present the simulatien en
ronment, the parameters and the results of our simulations. Finally, condusion
are presented in section 5.

2. Grid QoS Framework Description

We consider a Grid consisting of a number of users and a number ofcesou

There are two kind of users; Guaranteed Service (GS) and Best &) users.

The tasks originating from these users are of GS or BE type, resdgcthlso

there are various types of resources based on the types of tasketve{aS or

BE or both) and the priority they give to each type. Our framework giedsyd
bound guarantees to GS users and fairness to BE users. We assuan@atikat
executing ataresource is non-divisible and non-interruptible (nearptable)

and thath the local scheduler of every resource applies Weighted Feiiririgu
(WFQ) to the queued GS tasks. We initially describe our framework assuming
that every machine has one CPU, and later extend it to the multi-CPU machine
case.

The GS users are leaky bucket constrained, and so they follpws& ¢on-
strained task generation pattern. A GS user must first register to a cesour
before they can actually use it, while he can register to a number of resourc
During this registration the specific values of his task generation pattern is
agreed (Figure 1).

Based on[13]in order for a GS usdp register to a resoureghe conditions
(1) and (2) must be met:

Pir < gir(t) = NC,V(Z+7 (1)

k=1  Wkr

and
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Figure 1. The (o, o) constrained GS users in the Grid.

The p;, is the long term task generation rate of the GS user. d;hes the
maximum size of tasks (burstiness) that the GS user will ever send, in a very
short time interval, to the specific resource. Furthernt@rés the computing
capacity of resource, N,.(t) is the number of GS users already registered to
the resource at timet, andw, is the weight of the GS usérfor using the
resourcer. Also J'** is that the maximum task length the GS useiill ever
send to the resoureewhile J7"** is the resource’s maximum acceptable task
length. Finally the condition (1) must hold both for a new and for the already
registered, at a resource, GS users. If both (1) and (2) hold th&Sheser can
register to the resource; otherwise, the registration fails and the GS user mu
search for another resource.

When a GS usercreates a task, he searches for the best suitable resource
r, to which it has already registered. Specifically he first checks whétker
agreed f;,, ;) constraints are satisfied. Specifically we denotdpyt), i =
1,2,---, N the total tasks workload submitted by GS uskrresource: in the
interval [0, t]. We will say that a GS useris (p;,., o;-) controlled with respect
to resourcer, if the following condition is valid:

Jz"/‘(t) < Oip + Pir - t7Vt >0 (3)

If one or more new GS user’s tasks invalidate (3), then the GS user mabyloc
withhold these tasks for a time peridg; until (3) becomes valid again. This
condition ensures that the user remains leaky bucket constrainedefrooite
the user checks if the taskjdengthI/ is not exceed the one agreed:

I < gmes. (4)
After these checks in order for the tagko be submitted for execution to the

resourcer the task must not miss its deadlif® . In [13] we showed that if
the conditions (1) and (3) hold then the delay a task will incur from the time it
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is submitted by the user, until it finishes its execution at a selected resource is
at most:

mazx
Oir Ji1

Gir Gir

22 @

whereg;, is the minimum value of;,(¢) that does not invalidates (1) for any
registered user. To this delay we must add the total communication dglay
for transferring the task to the selected resource and the totalfiintbe GS
user withholds the task in its local queue (Fig@®. So the delay bound’
equals to:

Jmaz  ymaz

DI < Ty +dip + %2 + 22— 4 5= (6)

LT
Gir

Finally when the GS user hasn’t any more tasks to send to the Grid, he can
either do nothing or he can unregister from his registered resourct Iatter,
dynamic, case the other GS users are infromed for the user’s unrégrsaad
they can try to register to these resources.

On the other hand for BE users, we aim at attaining a fair scheduling pro-
cedure. Based on [2]and [12] we proposed in [13] the Fair UserTas#
Scheduling (FUTS) algorithm, which tries to be fair both for the users and fo
the tasks.

2.1 Resources Configurations

We distinguishes four types of resources: GS, BE,BESEQUAL and
GS.BE_PRIORITY. GS resources handle only tasks originating from GS users.
When a GStask arrives ata GS resource, itis queued at the local WEeQuer.
When a machine is freed, the local WFQ scheduler selects the next G8ttask f
execution. BE resources handle tasks originating only from BE usene. T
arriving tasks are placed in a queue and served following a First Corse Fir
Served (FCFS) policy to the first available machine. _BISEQ. resources
handle tasks originating from both GS and BE users. GS tasks are served
using a local WFQ scheduler as in the GS resources. Each arrivingsBEsta
considered as belonging to a new user, who wants to register to theages&ar
a BE task is queued in the local WFQ scheduler only if the condition of Eq. (1)
holds for all the registered users. In this case the number of registeeeslig
increased by one and when the BE task finishes execution it is corgiagbn
decreased by one. If (1) does not hold for atleast one registeegthen the task
is rejected and a failure notice is returned to the originating userBE®R.
resources again handle tasks originating from both GS and BE usetasks
are not handled in the same way. GS tasks are handled by the local WFQ
scheduler, while BE tasks are placed in a FCFS queue. When a machine is
freed the tasks in the local WFQ scheduler are handled first. If therecare
such tasks then the BE tasks from the FCFS queue are served . BEGTR.
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resource is characterized as preemptive if upon the arrival of a GSa&S
task currently under execution is paused and replaced by the new GS task
otherwise the GBE_PR. resource is characterized as non-preemptive. Also,
a BE task is scheduled to a &E_EQ. or GSBE_PR. resource only when its
size is smaller than the resource’s maximum acceptable task size. Finally when
a GSBE_PR. non-preemptive resource is used, the delay bound for GS tasks
of Eqg. (6), becomes:

Jmaw - ymaz

D} < Ty +dip + G2 + 5=+ 7o + Rey (1)

whereR,. is the residual time for the BE task found at the resource (if any) to
complete execution. Thus,

Jmaz

R, <=—. (8

In all other resource types (namely, GS, BE_PR. preemptiveR,. equals to
0.

Furthermore the proposed framework can easily be extended to the case
of resources that consist of many machines-CPUs, provided that saime o
definitions and conditions given earlier are appropriately modified. The total
computational capacit¢,. of a multi-machine resourcejsis expressed as:

Cr = jj‘il Crjy (9)
where C,; is the computational capacity of machigigand M is the total
number of machines (CPUSs) in the resource. However, in the multi-machine
resources case th@. used in Egs. (1) and (6) is not always equal with the
C]. Furthermore, we assume that the local scheduler assigns tasks totthe firs
available machine-CPU, in a round-robin manner.
In (1), g;r(¢) is the average service rate the resourgearantees to provide to
useri. SinceC. is the total service rate the user has access to from the resource,
C, in Eqg. (1) has to be replaced I8y, yielding

M
wir-z L Chry
Pir < gir(t) = W}j (10)
k=1  Whkr
Since tasks are non-divisible, the resource cannot use its total compatatio
capacity to process a job. The worst case is obtained when a task iseasign
the machine (CPU) with the lowest computational capaCjty” = min; C,;.
Therefore (. in Eg. (6) and in all the other delay bounds given in Section Il
has to be replaced y"". For example, Eq. (6) becomes:
JZZ‘LGI
Gir

Dggﬂr+dzr+%+ +% (11)



3. Simulation Results

In our simulations we used realistic parameters based on [14]. Specifi-
cally in [14] a thorough analysis of the tasks inter-arrival times, the waiting
times at the queues, the execution times, and the data sizes exchanged at the
kallisto.hellasgrid.gr cluster, which is part of the EGEE Grid infrastructure,
were presented and analytic models were proposed. So based orethdte r
in our experiment we used 3 GS users and 2 BE. The GS users had the-cha
teristics presented in Table 1 and the BE users the characteristics pdeisente
Table 2.

Table 1. GS user task lengths and inter-arrival times used in our stipog

User Characteristic Value
Ul Task Length 10000 Ml
U2 Task Length 1700 MI
u3 Task Length 10 MI
Ul Task Inter-arrival 10 secs
u2 Task Inter-arrival 60 secs
U3 Task Inter-arrival 110 secs
Ul p 10000/10 = 1000 MIPS
u2 p 1700/60 ~ 30 MIPS
(UK} p 10/110 ~ 0.1, we used 1 MIPS
Ul o 50000 Ml
U2 o 8500 Ml
U3 o 50 Ml

Table 2. BE users characteristics

User Characteristic Value

U4 Task Length 10000 Ml

us Task Length 10000 Ml
U4 Task Inter-arrival 100, 80, 60, 40, 20, 10, 1 secs/task

or or

Task Generation Rate 0.01,0.0125,0.017,

0.025,0.05,0.01, 1 tasks/sec

us Task Inter-arrival 100 tasks/sec
or or
Task Generation Rate 0.01 tasks/sec

In our simulations we use 3 clusters/resources. For the single-CPU ease th
resource capacity of R1 is 1015 MIPS, of R2 is 680 MIPS and of R3 is 340
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MIPS. For the multi-CPU case all the CPUs have capacity equal to 34 Mi#PS an
R1 has 30 CPUs, R2 has 20 and R3 has 10. Furthermore in our simulations we
used the resource type scenarios presented in Table 3. When thedBEcess
scenario is used then all the users (U1, U2 ,U3) are BE users with the exac
same characteristics as the corresponding GS users (U1, U2 ,U3).

Table 3. Resources scenarios

Scenarios R1 R2 R3
GB GS GS BE
GBE GSBE_EQ. GSBE_EQ. BE
GBP GSBE_PR. n.pr. GSBE_PR. n.pr. BE
BE BE BE BE

The meta-scheduler uses a two-phase scheduling procedure foreBE us
with a time window equal to 1 second. More specifically, the Earliest Dead-
line First (EDF) algorithm is used for the queuing phase and the Earliest Sta
Time (EST) for the resource assignment phase. Also in our simulations all the
users, GS and BE, have equal deadlines. Specifically the deadlinéusad
simulations is the maximum deadline calculated for a GS user, based on (6)
or (11) and adding a small overhead in order to take into accounf tedd
(communication) delays. Furthermore, in our simulations we assume that the
resources, the users and the meta-scheduler communicate directly with links
of equal bandwidth, while the propagation delay is equal to 0. Finally in the
static case all the users stop producing new tasks at the same time, while in
the dynamic case the Ul user stops producing new tasks first. This way in
the dynamic case U1 unregisters from his registered resources atuBl@S
users can try to register to these. In our simulations we recorded the fajjowin
performance metrics:

m the number of tasks that miss their non-critical deadlines.

m the resource’s utilization, defined as the total time a resource is used for
the execution of tasks over the total time of the simulation.

m the number of failed tasks.

3.1 Resources Configurations

A number of simulations where conducted to evaluate the different resourc
configurations. We used the configuration scenarios presented inJabte
our simulations we used 5 users (3 GS and 2 BE), 3 resources and a meta-
scheduler. Finally using these parameters of Table 1 and Table 2 U1 registe
to R1, while U2 and U3 register to R2.
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First in Figure 2 we show that our framework succeeds in providing QoS
to the GS users. Figure 2 presents the percentage of the per user rafmber
tasks that miss their non-critical deadlines over the total number of tasks eac
user creates. This percentage is presented for the various resoer@ios
and tasks generation rates of the BE user U4 (0.05, 0.1, and 1 taskdfec)
observe that in all cases the GS users (U1, U2, U3) do not miss thelirdesad
Only when the BE resource scenario is used, where the GS usersazeel tas
BE users, then all the users miss many of their deadlines. In the GBE and the
GBP scenarios (Table 3) fewer tasks miss their deadlines, however irBee G
resource scenario many tasks fail (Figure 3). In the GBE resousted0
when a BE task arrives at a GBE_EQ. resource, but cannot be scheduled
because the constraints of the already registered GS uses cannatetged,
then the task is dropped (fails). So the GBP resource scenario seenesthe b
in terms of the number of tasks sucessfully scheduled without missing their
deadlines.

1009

80%-+

% 60%
o]
Q

40%-

Fails per User

20%- —1

o [l

Non-Critical Deadlines Expired

BE/L

GBI0,05
GBO1
GB/L
GBE/0,05
GBE/01
2 GBE/L
g
GBPI005
GBPIO1
GBP/L
BE0,05
BEO,L

Scenario/Task Rate Scen:

Figure 2.  Non-critical deadlines expired per

Figure 3. Failed tasks per user
user

In Figure 4 the utilization per resource is presented again for the same sce-

narios as before. The resources are utilized more in the GB reso@arisc

and this is due to resource R3 that handles exclusively BE tasks. In the oth
resource scenarios, all resources can serve tasks from allargkes a result

the resources utilization is smaller. The smallest utilization occurs in the GBE
scenario, but this is the result of the failed tasks, so the GBP scenants see
the best in terms of resources utilization (Figure 5). Finally, in Figure 6 the
standard deviations of the resources utilization are presented. Thestand
deviation is high in the GB scenario, where the R3 resource is more utilized
than the R1 and R2 resources, while it is very small for the GBP scenario.

3.2 Static against Dynamic Registration

We conducted a number of experiments to evaluate the benefits of the static
against the dynamic registration of the GS users to the resources. Ix-our e
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Figure 6.  Standard deviation of resource utilization

periments we decreased the number of tasks the U1 generates, this way at a
point at time, during an experiment, U1 stops producing new tasks and so R1
becomes available for use from the other GS users. When static registration
is used, U2 and U3 users do not take advantage of resource R1, wiele w
dynamic registration is used U1 unregisters from R1 and U2, U3 register to it.
In our experiments we observe the benefits of the dynamic registration mainly
in the GBE resource scenario. Then fewer tasks miss their non-critiadlide
(Figure 8) and fewer tasks fail (Figure 10), than when static registritiosed
(Figure 7, Figure 9). This happens because in the dynamic registratieniea
BE tasks of user U5 can also use the R1 resource, when the Ul umefyiste
it. Furthermore in the GBE scenario R1’s utilization increases because the BE
tasks of U5 are executed there, however the utilization increases aRd,iR8
because of fewer failed tasks. Finally in the GBP scenario the benefite of th
dynamic registration are very few, both in terms of the number of tasks missing
their deadlines and in terms of the resources utilizations.

3.3 Multi-Cpu Resources

We conducted a number of experiments using the multi-Cpu resources. Two
sets of experiments were conducted. In the first the delay boundstgiviee
GS users and the deadlines of all the users tasks are calculated bg$§d on
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while in the second set based on (11). In Figure 11 and Figure 12 wetbho

in case condition (6) is used then most of the tasks the users create lose their
deadlines. So in the multi-Cpu case the (11) is the correct formulation of the
delay bound given to the GS users.
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Figure 11.  Non-critical deadlines expired Figure 12.  Non-critical deadlines expired

per user using condition (6) per user using condition (11)
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4. Conclusions

In this work we examine the way Grid resources should be configured so
as to provide deterministic delay guarantees to Guaranteed Service @S) us
and fairness to Best Effort (BE) users. A number of simulations arduiad,
which indicate that the resources which server both types of userisiptostter
results, interms of deadlines missed and resources utilizations. Finally we sho
that benefits exist from the dynamic registration of the GS users to thecesou
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