
RACE: A Software-Based Fault Tolerance Scheme
for Systematically Transforming Ordinary Algorithms to Robust Algorithms

Chi-Hsiang Yeh, Behrooz Parhami, Emmanouel A. Varvarigos, and Theodora A. Varvarigou

Abstract

We propose the robust algorithm-confi gured emulation
(RACE) scheme for effi cient parallel computation and com-
munication in the presence of faults. A wide variety of al-
gorithms originally designed for fault-free meshes, tori, and
k-ary n-cubes can be transformed to corresponding robust
algorithms through RACE. In particular, optimal robust al-
gorithms can be derived for total exchange (TE) and as-
cend/descend operations with a factor of 1

�
o � 1 � slowdown.

Also, RACE can tolerate a large number of faulty elements,
without relying on hardware redundancy or any assumption
about the availability of a complete subarray.

1. Introduction

A d-dimensional mesh consists of n1n2 ����� nd nodes
of degree 2d arranged in an n1 � n2 ��������� nd grid.
When wraparound links are used for all dimensions, a d-
dimensional torus results. The scalability, compact lay-
out, small node-degree, and desirable algorithmic properties
have made meshes, tori, and n-ary d-cubes the most popu-
lar topologies for the interconnection of parallel processors.
A very large variety of algorithms have been proposed for
these networks [1, 9, 12]. These algorithms usually assume
that a fault-free mesh or torus is available, and most of them
cannot be applied to faulty meshes or tori directly, even in
the presence of only a small number of faulty elements.

In order to utilize the large body of algorithms already de-
veloped for fault-free meshes, tori, and n-ary d-cubes, many
hardware-based schemes have been proposed to reconfi g-
ure a faulty array and ensure the availability of an intact ar-
ray with desired dimensions in a very short time, despite the

Chi-Hsiang Yeh is with the Dept. of Electrical and Computer Engineer-
ing, Queen’s University, Kingston, Ontario, K7L 3N6, Canada.

Behrooz Parhami is with the Dept. of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106, USA.

Emmanouel A. Varvarigos is with the Dept. of Electrical and Computer
Engineering, University of California, Santa Barbara, CA 93106, USA.
Work performed while with TU Delft, Netherlands.

Theodora A. Varvarigou is with the Division of Computer Science,
Dept. of Electrical and Computer Engineering, National Technical Univer-
sity of Athens, GR-157 73, Athens, Greece.

presence of faults [2, 4, 15]. Reconfi guration switching and
standby sparing are examples of methods in this category.
Such fault-tolerant systems are, however, expensive to im-
plement and the number of faults that can be tolerated is lim-
ited by the redundancy of the hardware, which is in turn lim-
ited by the cost overhead that can be afforded.

A software approach based on robust algorithms [11]
aims at designing programs that are easy to implement and
can run on faulty meshes and tori effi ciently, without hav-
ing to rely on hardware redundancy. In [8], Kaklamanis et
al showed that almost every n � n p-faulty mesh and any
mesh with at most n � 3 faults can sort n2 packets in O � n �
time, where the fault rate p is a constant that is suffi ciently
small. In [10] we proposed a robust sorting algorithm based
on shearsort, which can be executed on meshes with bypass
capacity over faulty processors. We then showed in [16, 19]
that 1-1 sorting (1 key per healthy and connected proces-
sor) in row-major or snakelike row-major order can be per-
formed in 3n

�
o � n � communication and comparison steps

on an n � n mesh (without any bypass capacity) with an ar-
bitrary pattern of o �
	 n � faults. In [18], we further improved
the sorting time to 2 � 5n

�
o � n � communication steps and

2n
�

o � n � comparison steps using a different ordering (i.e.,
a variant of blockwise snakelike order), which is asymptot-
ically as fast as the fastest sorting algorithm for fault-free
meshes (within a factor of 1

�
o � 1 � ). These results demon-

strate that some fairly complex problems such as sorting can
be solved by faulty meshes in times comparable to those re-
quired in fault-free meshes. Several other robust algorithms
or fault tolerance schemes can be found in [3, 6, 14].

In spite of the aforementioned positive results, it is im-
practical to redesign all algorithms one by one for faulty
meshes and tori; hence, the motivation to devise a system-
atic method for transforming ordinary algorithms for fault-
free networks to obtain fast (with a slowdown factor no more
than 1

�
o � 1 � ) and easy-to-implement robust algorithms. No

such transformation method has been reported in the litera-
ture thus far. One general fault tolerance scheme along this
line was devised by Cole, Maggs, and Sitaraman [5], who
showed that an n � n mesh can be emulated with constant
slowdown on an n � n mesh that has n1 � ε faulty processors
for any fi xed ε 
 0. This result is of great theoretical impor-
tance. However, their proposed emulation scheme is quite



complicated, leading to diffi cult implementation issues, and
comes with huge performance penalties in practice, given
the signifi cant increase in the leading constants of the run-
ning times. We aim to develop another general emulation
scheme that is far more effi cient.

We propose the robust algorithm-confi gured emulation
(RACE) scheme for fault-tolerant parallel computation and
communication without relying on hardware redundancy.
The RACE scheme essentially adds an “ adaptation layer”
between ordinary algorithms and the faulty network. From
the algorithm point of view, the adaptation layer located on
top of the hardware layer hides the faulty processors and/or
links from the algorithms, so that a virtual fault-free network
is provided to higher layers and ordinary algorithms can be
executed on such a platform without modifi cations; from
the network point of view, the adaptation layer incorporates
fault tolerance into the design of algorithms based on vir-
tual subgraph embeddings, so that the RACE scheme in ef-
fect transforms ordinary algorithms to corresponding robust
algorithms that can run on faulty networks. The resultant
robust algorithms usually have negligible degradation com-
pared to fault-free systems (e.g., a factor of 1

�
o � 1 � slow-

down), and are relatively easy to implement after reconfi gu-
ration is performed, which only needs to be done once after a
fault occurs or is recovered from. Also, when the number of
faults is small, reconfi guration for RACE can be performed
in a short time, and possible confi gurations for different pat-
terns of faults may be precomputed and stored, if so desired,
in a distributed manner and broadcast when needed. More-
over, the RACE scheme can work in combination with pre-
vious hardware-based fault tolerance schemes, by executing
ordinary algorithms when the number of faults has not ex-
ceeded the limit of the hardware fault tolerance scheme, and
executing robust algorithms otherwise.

2. Faulty arrays, emulation, and routing

In this section, we defi ne the notion of virtual subar-
rays (VSA) in faulty arrays (with or without wraparound)
and introduce the RACE scheme, an effi cient fault tolerance
scheme for computing and communication on faulty arrays
without relying on hardware redundancy.

2.1. Virtual subarrays and reconfiguration

A virtual subarray (VSA) of a d-dimensional faulty array
(with or without wraparound) is obtained by embedding a
smaller d-dimensional array in it, where the embedded rows
of the same dimension do not overlap and the embedded
nodes and links are mapped onto healthy nodes and paths
(See Fig. 1a). More precisely, each node of this smaller ar-
ray is mapped onto a different healthy node of the faulty ar-
ray; each link of this smaller array is mapped onto a healthy
path of the faulty array. The embedded rows (or columns)
of a certain dimension i, i � 1 � 2 � � � ��� d, do not overlap with

1 2 3

4

5 6 7 8

9 10 11

12

(a) (b) (c)

F igu re 1 . (a ) A 3 -by -4 VSM in a fau lty 6 -by -
7 m esh w ith 9 fau lts . (b ) V irtua l row s o f the
VSM . (c ) V irtua l co lum ns o f the VSM .

each other, and are called dimension-i virtual rows (or vir-
tual columns) of the virtual subarray. Figures 1b and 1c
show the virtual rows and virtual columns of a 3 � 4 virtual
subarray.

Node � x1 � x2 � � � ��� xd � of the virtual subarray (called a VSA
node) is located at the intersection of virtual row x1 of di-
mension 1, virtual row x2 of dimension 2, ... , and virtual
row xd of dimension d. Note that the virtual rows of dif-
ferent dimensions are allowed to have more than one node
in common, in which case we select one of the nodes at the
intersection either arbitrarily or according to certain criteria
(e.g., minimizing the dilation of the resultant embedding).
Then, VSA nodes � x1 ��� � ��� xi � 1 � xi � xi

�
1 ��� � ��� xd � for certain x j ,

j
�
� i, and all xi � 1 � 2 ��� � ��� mi form a dimension-i row of the

virtual subarray that has length equal to mi and is called a
VSA row. The nodes of a VSA row form a subset of the cor-
responding dimension-i virtual row. Figure 1a shows a 3 � 4
virtual subarray in an array with 9 faults and the associated
VSA nodes.

A virtual submesh (VSM) is a virtual subarray without
wraparound; a virtual subtorus (VST) is a virtual subarray
with wraparound. A congestion-free virtual subarray is a
virtual subarray embedded in a faulty array with load and
congestion both equal to 1 [9]. All the embedded links
of a congestion-free virtual subarray correspond to a set of
nonoverlapping paths in the faulty array. In other words, a
dimension-i virtual row intersects with a dimension- j virtual
row at exactly one node if i

�
� j, while a virtual row does

not intersect with another virtual row of the same dimen-
sion i. Many important problems can be solved effi ciently
on congestion-free virtual subarrays.

There usually exist many virtual subarrays in a faulty ar-
ray. In general, to achieve better performance, we prefer to
maximize the number of VSA nodes and minimize, for each
dimension, the difference between the maximum length of
virtual rows and the length mi of a VSA row. The largest of
these differences for all dimensions is called the width over-
head of the virtual subarray. When there are o � n � faulty pro-
cessors or links in a d-D n � n � ��� � � n array, it is guaranteed
that a d-D � n � o � n ��� � � n � o � n � � � ��� � � � n � o � n � � virtual
subarray with width overhead o � n � exists. In what follows



we present a simple reconfi guration method for fi nding such
a congestion-free virtual subarray in any N-node faulty array
with o � n � faults.

To reconfi gure such a faulty array, we start with all the
fault-free rows and columns as the candidate virtual rows
and columns for a VSA. Then we check each of the candi-
date virtual rows and columns and determine whether it is
located at the same hyperplane (i.e., � d � 1 � -D subarray) as
at least one faulty processor or link. Finally, the VSA nodes
are selected at the intersections of the candidate virtual rows
and columns that pass the preceding examination (i.e., the
rows and columns that are not at the same hyperplane as any
fault). Since the embedded links are disjoint, the resultant
VSA is a congestion-free virtual subarray. Also, the resul-
tant width overhead is o � n � since a virtual row or column can
be “ stretched” by only o � n � hops when we have o � n � faults.

Since the neighbors of a faulty processor or link can
broadcast the corresponding error messages along all the hy-
perplanes to which the fault belongs in O � dn � time, broad-
casting f faults requires O � f dn � time in the worst case,
leading to o � dn2 � time for reconfi guration. Note that, in
usual cases, reconfi guration using this simple method re-
quires Θ � dn � time since these broadcasting tasks can mostly
be executed in parallel. More complicated methods that may
require more time can also be used to fi nd (somewhat) larger
virtual subarrays. Since we only need to reconfi gure a faulty
array once after a new processor fails or recovers, the degra-
dation of system performance due to such a reconfi guration
is negligible in usual cases, regardless of whether a simple
or complicated method is used.

2.2. The RACE scheme

In this subsection we present the RACE scheme, which
redistributes the data on a faulty network to a virtual sub-
graph (e.g., an m1 � m2 � � ��� � md virtual subarray of a faulty
array), and then uses the virtual subgraph to emulate algo-
rithms developed for a fault-free network. We also present
the stepwise emulation technique (SET) for running array
algorithms on virtual subarrays.

Let M be the total number of data items in the virtual sub-
array and a be the load, which is the maximum number of
items per processor. We then have

a �

�
M

∏d
i � 1 mi �

when the data are spread approximately evenly on the virtual
subarray. When there are a � data items per healthy and con-
nected processor of the faulty mesh and the number of faults
is not large, we usually have load a � a � � 1. The load for
the virtual submesh in Fig. 1 is 3, assuming a � � 1 data item
per healthy processor in the faulty mesh. If M data items are
input/output to/from each healthy and connected processor,
then we in general prefer to select a virtual submesh which
minimizes the load a as well as the number of dummy items

required. In a typical situation where the number of faults
is smaller (e.g., o � n � ), the load factor is usually increased
by a factor of about 1 � a � only, and most healthy processors
(e.g., asymptotically 100 � o � 1 � %) are utilized and only a
few healthy processors (e.g., o � 1 � %) are wasted. Moreover,
a virtual subarray with asymptotically the same size (within
a factor of 1

�
o � 1 � ) as the entire array can be found using

the simple method of Subsection 2.1 that involves fault-free
rows and columns only, and is thus very easy to implement.

We assume that a preprocessing stage has identifi ed (per-
haps at reconfi guration time) a virtual subgraph to be used.
Then the proposed RACE scheme for transforming ordi-
nary algorithms to robust algorithms can be represented in
3 stages:

The emulation scheme� Stage 1: The data items to be processed are redis-
tributed evenly to the processors on the virtual sub-
graph such that a processor has at most a items. On
the virtual subgraph, a processor that has fewer than a
items may pad its list with suitable “ dummy item(s)”
(e.g., ∞ for sorting).� Stage 2: The virtual subgraph emulates a correspond-
ing algorithm for a fault-free subgraph (e.g., an m1 �
m2 � � ��� � md array), each processor of which has at
most a items.� Stage 3: The results are redistributed back to healthy
processors of the original faulty network (e.g., the n1 �
n2 � ��� � � nd faulty array).

The virtual subgraph is typically an embedded graph of
the same type with a smaller dimension (e.g., an embedded
submesh in a faulty mesh or an embedded smaller hierar-
chical swap network in a faulty hierarchical swap network
[17]); but it may also be an embedded graph of a different
type than the original faulty graph, such as an embedded
virtual subtorous in a faulty n-ary d-cube or an embedded
virtual submesh in a faulty torus. An important feature of
RACE is that the virtual subgraph used in RACE can be an
embedded subgraph with dilation and/or congestion larger
than 1. This is different from the strategy used in several
previous papers for fault tolerance, which assumes the exis-
tence of a smaller complete mesh or an actual CCC subgraph
or generalized Fibonacci cube (with dilation, congestion,
and expansion all equal to 1) exists in a faulty mesh or hyper-
cube. Note that such a strategy limits the number of faults
tolerable (e.g., to as small as 3 in [7]). Our results show
that this restriction is not necessary for the robust algorithms
to have reasonable performance, at least for fault tolerance
in meshes, tori, n-ary d-cubes, and some index-permutation
graphs [17]. The embedded subgraphs for RACE should,



however, still be carefully designed with certain looser re-
strictions (such as the ones for VSA) in order to achieve neg-
ligible slowdown.

Stage 2 of the RACE scheme can be implemented using
the stepwise emulation technique (SET), which directly em-
ulates a transmission over the dimension-i link of a proces-
sor by sending the data item along the dimension-i virtual
row to which the processor belongs. If the virtual subarray
is a complete array (that is, no faulty processor exists within
it and the embedded smaller array has dilation 1), no degra-
dation is caused by Stage 2 using this naive method. Un-
der wormhole or cut-through routing, or packet-switching
with a large load, the overhead caused by Stage 2, when
implemented with SET, is negligible. Also, many algo-
rithms, such as semigroup and prefi x computations [11], can
be emulated using SET with small overhead even if packet-
switching is employed and the load is as small as 1.

The stepwise emulation technique, combined with the
phase synchronization discipline (to be introduced in Sec-
tion 3), will be used to formulate Theorem 3.1 for fault-
tolerant computing on congestion-free virtual subarrays.
We can also use techniques other than SET to implement
Stage 2 of the RACE scheme. One example is the com-
paction/expansion technique used in [19]. Effi cient imple-
mentation of Stages 1 and 3 leads to Theorem 4.2, derived
in Section 4. A wide variety of important problems can then
be solved effi ciently in faulty arrays based on the RACE
scheme, either utilizing all healthy processors or only pro-
cessors on a virtual subarray.

2.3. Deadlock-free X � Y � routing in virtual subarrays

Deadlock-free routing in a virtual subarray can be per-
formed using a simple extension of XY routing. In a 2-D
mesh, we fi rst send a packet along the virtual row (i.e., in
the X � direction) to which the source node belongs (Step 1),
and then send it along the virtual column (i.e., in the Y � di-
rection) to which the destination node belongs (Step 2). As
long as there are at least two virtual channels per link, we can
avoid deadlocks by using virtual channel 1 for transmitting
packets in the X direction during Step 1 or in the Y direction
during Step 2, and using virtual channel 2 for transmitting
packets in the Y direction during Step 1 or in the X direc-
tion during Step 2. It can be verifi ed that no cyclic depen-
dency will arise so that wormhole routing is deadlock-free
using this “ X � Y � routing” strategy.

X � Y � routing can be easily extended to higher dimensional
arrays. To obtain a deadlock-free routing scheme for the en-
tire faulty array, we can use spanning trees to connect the
remaining nodes to nodes on the virtual subarray, and then
use the virtual subarray as a “ backbone” to route packets.
Using RACE, the stepwise emulation technique, and X � Y �
routing (or the strategy discussed previously that uses virtual
channels), most ordinary wormhole-routing or virtual cut-
through algorithms that have been developed without con-

sidering fault tolerance issues can be transformed into effi -
cient robust algorithms. The details are omitted in this paper.
In the following sections, we demonstrate how more compli-
cated algorithms, based on either store-and-forward packet
switching, virtual cut-through, and/or wormhole-routing,
can be transformed into robust algorithms through virtual
subarrays and RACE.

3. Fault-tolerant computing on VSAs

In this section we consider a special application of the
RACE scheme where data items are input/output to/from
VSA nodes.

3.1 Robust algorithms for congestion-free VSAs

In this subsection, we focus on a specifi c class of algo-
rithms which perform an average of S consecutive routing
steps along each of the dimensions without any computation
step in between, where links of some/all dimensions can be
used at a single step. We propose the phase synchronization
discipline and show that such algorithms can be emulated on
congestion-free virtual subarrays with negligible slowdown
under this discipline and the RACE scheme.

With the phase synchronization discipline, all nodes sim-
ply synchronize at the end of a phase (which may perform
certain computation steps). If there exists a congestion-free
m1 � m2 � ��� � � md virtual subarray whose width overhead
is o � S � , then the average slowdown factor for each phase is
1
�

o � 1 � relative to a fault-free m1 � m2 � ����� � md array
of the same type. This is because routing along a dimen-
sion of a congestion-free virtual subarray is only delayed by
o � S � steps additively. Moreover, if nodes synchronize at the
end of each phase, the interaction between delayed packets
will never cause excessive accumulation of delay on certain
packets, since the delay of one phase has no effect on the
next phase. The RACE scheme under the phase synchro-
nization discipline is easy to implement and is powerful in
that many important robust communication and computa-
tion algorithms can be performed with a factor of 1

�
o � 1 �

slowdown, as indicated in the following theorem and corol-
laries.

Theorem 3.1 If an algorithm for an array (i.e., mesh or
torus) performs an average of S consecutive routing steps
along some/all of the dimensions (at the same time under
the all-port communication model) without any computa-
tion step in between, and there exists a congestion-free m1 �
m2 � ��� � � md virtual subarray whose width overhead is
o � S � , then the slowdown factor for performing the algorithm
on a virtual subarray of the faulty array is 1

�
o � 1 � relative

to a fault-free m1 � m2 � ��� � � md array of the same type.

When the number of faulty processors and/or links in
an N-node n1 � n2 � ��� � � nd array is o � nmin � d � , where



nmin � min � n1 � n2 ��� � ��� nd � , it is always easy to fi nd at least an
� n1 � o � nmin � d � � � � n2 � o � nmin � d ��� � ��� � � nd � o � nmin � d � �
congestion-freevirtual subarray (which has N � o � N � nodes)
with width overhead o � nmin � d � , leading to the following
corollary.

Corollary 3.2 If an algorithm for an � n1 � o � nmin � d ��� �
� n2 � o � nmin � d ��� � ��� � � � nd � o � nmin � d ��� array (i.e., mesh
or torus) performs an average of S consecutive routing steps
along a dimension (or along each of several or all dimen-
sions) without any computation step in between, and there
are o � min � S � nmin � d ��� faulty processors in the n1 � n2 �
����� nd array, then the algorithm can be emulated on a vir-
tual subarray of the faulty array with a slowdown factor of
1
�

o � 1 � relative to the time required for a fault-free � n1 �
o � nmin � d � � � � n2 � o � nmin � d � � � ��� � � nd � o � nmin � d � � array
of the same type.

Note that the number of faulty processors and links that
can be tolerated in Theorem 3.1 and Corollary 3.2 for low-
dimensional arrays (i.e., small d) is not small. For example,
an N-node 3-D mesh/torus can tolerate Θ � 3

�
N � logN � faults

with the size of the virtual subarray being 1 � o � 1 � times that
of the entire array.

Communication algorithms, such as unicast, broadcast,
total-exchange, and multinode broadcast, are at the heart of
many applications [1]. Based on Theorem 3.1 and Corollary
3.2, we can show that these communication tasks as well as
a variety of other important algorithms can be executed on
congestion-free virtual subarrays with a slowdown factor of
1
�

o � 1 � relative to the corresponding completion time in a
fault-free array. The following corollary is offered as an ex-
ample of the type of results that can be obtained from The-
orem 3.1 regarding the total-exchange communication task
[1] in faulty n-ary d-cubes.

Corollary 3.3 We can execute 2d instances of a TE task
in an n-ary d-cube that has an arbitrary pattern of o � n � d �
faulty processors and/or links in � N � 1 � Dave � dnN � 4 �
o � dnN � communication time, where Dave is the average dis-
tance of a fault-free � n � o � n � d � � -ary d-cube, N � nd �
o � nd � is the size of the virtual � n � o � n � d � � -ary d-subcube,
and data items are input/output to/from the virtual � n �
o � n � d ��� -ary d-subcube. This communication time is asymp-
totically optimal within a factor of 1

�
o � 1 � .

Many other important computation problems can also
be performed effi ciently based on Theorem 3.1. As-
cend/descend algorithms, including FFT and permutation
routing, form an important subclass of such algorithms and
will be investigated in the following subsection for faulty n-
ary d-cubes.

3.2 Robust ascend/descend algorithms
on faulty n-ary d-cubes

Ascend/descend algorithms [9, 13] require successive
operations on data items that are separated by a distance
equal to a power of 2. Many applications, such as FFT,
bitonic sort, matrix multiplication, and convolution, can be
formulated using algorithms in this general category. Re-
duction (e.g., semigroup computation), parallel prefi x com-
putation, and many other algorithms developed for hyper-
cubes and butterfl y networks (e.g., broadcast algorithms)
can also be formulated as ascend/descend algorithms or their
variants.

To execute an ascend algorithm in a fault-free m-ary d-
cube, where m is a power of 2, we simply send packets to
nodes 1 � 2 � 4 ��� � ��� m � 2 hops away along dimension 1, and then
send packets to nodes 1 � 2 � 4 ��� � ��� m � 2 hops away along di-
mension 2, and so on. Since the routing path between any
source-destination pair in an ascend/descend algorithm be-
longs to a certain dimension and does not contain any turns,
the length of a path in a faulty n-ary d-cube with width over-
head Woverhead is increased by at most Woverhead hops com-
pared to a fault-free m-ary d-cube. From Theorem 3.1, when
Woverhead � o � m � logm � , the slowdown factor for executing
an ascend algorithm on the virtual m-ary d-subcube is only
1
�

o � 1 � compared to a fault-free m-ary d-cube. Moreover,
we can execute d ascend algorithms concurrently on the vir-
tual m-ary d-subcube by rotating the dimensions.

4. Robust algorithms utilizing the entire faulty
array

In Section 3, we have assumed that data items are in-
put/output to/from a virtual subarray. By combining Theo-
rem 3.1 with an algorithm for performing data redistribution
[16, 17, 18, 19], which moves data from healthy and con-
nected processors of the faulty array to the corresponding
processors in the virtual subarray in negligible time, we for-
mulate Theorem 4.2 for fault-tolerant computing and com-
munication on the entire faulty array (in contrast to comput-
ing on a virtual subarray, as required by Theorem 3.1).

Theorem 4.1 Data redistribution from a d-D n � � ��� n array

with o � n1 � 1
d � faulty processors onto an appropriate virtual

subarray can be performed in o � hdn � steps, where h is the
number of data items per healthy processor.

Theorem 4.2 Let T be the total time required for perform-
ing an algorithm on the fault-free array, where the algo-
rithm for an array (i.e., mesh or torus) performs an average
of S consecutive routing steps along some/all of the dimen-
sions (at the same time under the all-port communication
model) without any computation step in between. If there
exists an m1 � m2 � ��� � � md virtual subarray whose width
overhead is o � S � , data redistribution and its inverse process



can be performed in o � T � time, and the virtual subarray is
congestion-free, then the slowdown factor for performing
the algorithm on the entire faulty array, each healthy and
connected processor of which has at most h data items, is
1
�

o � 1 � relative to a fault-free m1 � m2 � ��� � � md array of
the same type with load at most � h � ∏d

i � 1 ni � f � � ∏d
i � 1 mi � .

When the number of faults is small and data items are
mapped to blocks of appropriate size nearby, it is guaran-
teed that a congestion-free virtual subarray exists and data
redistribution can be performed in negligible time. Based on
Theorem 4.2 and Corollary 3.3, we can derive the following
corollary.

Corollary 4.3 A total of 2d � 1 (or 2d � o � d � ) TE tasks can
be executed in an n-ary d-cube that has an arbitrary pattern
of f faulty processors and/or links in dnN � 4 � o � dnN � com-
munication time, which is optimal within a factor of 1

�
o � 1 �

when d is not a constant, where f � o � min � n1 � 1
d � n � d2 � �

(or f � o � min � n1 � 1
d � n � d ��� , respectively), N � nd � f is

the number of healthy processors, and data items are in-
put/output to/from each of the healthy and connected pro-
cessors in the entire faulty n-ary d-cube.

If a message can be split into 2dk � o � dk � packets with
any positive integer k, the time required to perform a sin-
gle TE task becomes nN � 8 � o � nN � communication time
when d is not a constant, a message requires one time unit
for transmission, and a packet requires 1 � � 2dk � o � dk � � time
unit for transmission. This time complexity is also optimal
within a factor of 1

�
o � 1 � for both fault-free and faulty n-ary

d-cubes.

5. Conclusion

In this paper, we have proposed the RACE scheme
for transforming ordinary algorithms to obtain effi cient ro-
bust algorithms. Based on RACE, we derived the fastest
known robust algorithms for a variety of important problems
such as total-exchange and ascend/descend computations on
faulty arrays. The techniques used in this paper can also be
applied to a variety of other important problems in parallel
computation [1, 9, 12] and can be used to derive effi cient ro-
bust algorithms for other network topologies.

References

[1] Bertsekas, D.P. and J. Tsitsiklis, Parallel and Distributed
Computation – Numerical Methods, Athena Scientifi c, 1997.

[2] Bruck, J., R. Cypher, and C. Ho, “ Fault-tolerant meshes and
hypercubes with minimal numbers of spares,” IEEE Trans.
Comput., vol. 42, no. 9, Sep. 1993, pp. 1089-1104.

[3] Bruck, J. and R. Cypher, and C.-H. Ho, “ Wildcard dimen-
sions, coding theory and fault-tolerant meshes and hyper-
cubes,” IEEE Trans. Comput., vol. 44, no. 1, Jan. 1995, pp.
150-155.

[4] Chen, Y.-Y., S.J. Upadhyaya, and C.-H. Cheng, A compre-
hensive reconfi guration scheme for fault-tolerant VLSI/WSI
array processors, IEEE Trans. Computers, Vol. 46, no. 12,
Dec. 1997, pp. 1363-1371.

[5] Cole, R., B. Maggs, and R. Sitaraman, “ Multi-scale self-
simulation: a technique for reconfi guring arrays with faults,”
ACM Symp. Theory of Computing, 1993, pp. 561-572.

[6] Deconinck, G., V. De Florio, R. Lauwereins, and T.A. Var-
varigou, “ EFTOS: a software framework for more depend-
able embedded HPC applications,” Proc. Annual European
Conf. Parallel Processing, 1997, pp. 1363-1368.

[7] Jiang, F.-S., S.-J. Horng, and T.-W. Kao, “ Embedding of gen-
eralized Fibonacci cubes in hypercubes with faulty nodes,”
IEEE Trans. on Parallel and Distributed Systems, Vol. 8, no.
7, Jul. 1997, pp. 727-737.

[8] Kaklamanis, C., A.R., Karlin, F.T. Leighton, V. Milenkovic,
P. Eaghavan, S. Rao, C. Thomborson, and A. Tsantilas,
“ Asymptotically tight bounds for computing with faulty ar-
rays of processors,” Proc. Symp. Foundations of Computer
Science, vol. 1, 1990, pp. 285-296.

[9] Leighton, F.T., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.

[10] Parhami, B. and C.-Y. Hung, “ Robust shearsort on incom-
plete bypass meshes,” Proc. Int’l Parallel Processing Symp.,
1995, pp 304-311.

[11] Parhami, B. and C.-H. Yeh, “ The robust-algorithm approach
to fault tolerance on processor arrays: fault models, fault di-
ameter, and basic algorithms,” Proc. First Merged Interna-
tional Parallel Processing Symposium and Symp. Parallel
and Distributed Processing, Apr. 1998, pp. 742-746.

[12] Parhami, B., Introduction to Parallel Processing: Algorithms
and Architectures, Plenum Press, 1999.

[13] Preparata, F.P. and J.E. Vuillemin, “ The cube-connected cy-
cles: a versatile network for parallel computation,” Commu-
nications of the ACM, vol. 24, no. 5, May 1981, pp. 300-309.

[14] Tzeng, N.-F. and G. Lin, “ Maximum reconfi guration of 2-
D mesh systems with faults,” Proc. Int’l Conf. Parallel Pro-
cessing, vol. 1, 1996. pp. 77-84.

[15] Varvarigou, T.A., V.P. Roychowdhury, and T. Kailath, “ Re-
confi guring processor arrays using multiple-track models:
the 3-track-1-spare-approach,” IEEE Trans. Computers, vol.
42, no. 11, Nov. 1993, pp. 1281-1293.

[16] Yeh, C.-H. and B. Parhami, “ Optimal sorting algorithms on
incomplete meshes with arbitrary fault patterns,” Proc. Int’l
Conf. Parallel Processing, Aug. 1997, pp. 4-11.

[17] Yeh, C.-H., “ Effi cient low-degree interconnection networks
for parallel processing: topologies, algorithms, VLSI lay-
outs, and fault tolerance,” Ph.D. dissertation, Dept. Electrical
& Computer Engineering, Univ. of California, Santa Barbara,
Mar. 1998.

[18] Yeh, C.-H., B. Parhami, H. Lee, and E.A. Varvarigos, “ 2 � 5n-
step sorting on n � n meshes in the presence of o ��� n � worst-
case faults,” Proc. Merged Int’l Parallel Processing Symp.
& Symp. Parallel and Distributed Processing, Apr. 1999, pp.
436-440.

[19] Yeh, C.-H., and B. Parhami, “ Effi cient sorting algorithms on
incomplete meshes,” J. Parallel Distrib. Comput., to appear.


