RACE: A Software-Based Fault Tolerance Scheme
for Systematically Transforming Ordinary Algorithmsto Robust Algorithms

Chi-Hsiang Yeh, Behrooz Parhami, Emmanouel A. Varvarigos, and Theodora A. Varvarigou

Abstract

We propose the robust algorithm-configured emulation
(RACE) schemefor efficient parallel computation and com-
munication in the presence of faults. A wide variety of al-
gorithmsoriginally designed for fault-free meshes, tori, and
k-ary n-cubes can be transformed to corresponding robust
algorithms through RACE. In particular, optimal robust al-
gorithms can be derived for total exchange (TE) and as-
cend/descend operationswith afactor of 1+ 0o(1) dowdown.
Also, RACE can tolerate a large number of faulty elements,
without relying on hardware redundancy or any assumption
about the availability of a complete subarray.

1. Introduction

A d-dimensiona mesh consists of nin,---ng nodes
of degree 2d arranged in an ny x Ny x --- x Ng grid.
When wraparound links are used for all dimensions, a d-
dimensional torus results. The scalability, compact lay-
out, small node-degree, and desirable algorithmic properties
have made meshes, tori, and n-ary d-cubes the most popu-
lar topologiesfor the interconnection of parallel processors.
A very large variety of agorithms have been proposed for
these networks|[1, 9, 12]. These algorithms usually assume
that afault-free mesh or torusis available, and most of them
cannot be applied to faulty meshes or tori directly, even in
the presence of only a small number of faulty elements.

Inorder to utilizethelargebody of algorithmsalready de-
veloped for fault-free meshes, tori, and n-ary d-cubes, many
hardware-based schemes have been proposed to reconfig-
ure afaulty array and ensure the availability of an intact ar-
ray with desired dimensionsin avery short time, despite the

Chi-Hsiang Yehiswith the Dept. of Electrical and Computer Engineer-
ing, Queen’s University, Kingston, Ontario, K7L 3N6, Canada.

Behrooz Parhami is with the Dept. of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106, USA.

Emmanouel A. Varvarigosiswith the Dept. of Electrical and Computer
Engineering, University of California, Santa Barbara, CA 93106, USA.
Work performed while with TU Delft, Netherlands.

Theodora A. Varvarigou is with the Division of Computer Science,
Dept. of Electrical and Computer Engineering, National Technical Univer-
sity of Athens, GR-157 73, Athens, Greece.

presence of faults[2, 4, 15]. Reconfiguration switching and
standby sparing are examples of methods in this category.
Such fault-tolerant systems are, however, expensive to im-
plement and the number of faultsthat can betoleratedislim-
ited by the redundancy of the hardware, whichisinturnlim-
ited by the cost overhead that can be afforded.

A software approach based on robust algorithms [11]
aims at designing programsthat are easy to implement and
can run on faulty meshes and tori efficiently, without hav-
ing to rely on hardware redundancy. In [8], Kaklamanis et
al showed that almost every n x n p-faulty mesh and any
mesh with at most n/3 faults can sort n? packets in O(n)
time, where the fault rate p is a constant that is sufficiently
small. In[10] we proposed arobust sorting algorithm based
on shearsort, which can be executed on meshes with bypass
capacity over faulty processors. We then showed in [16, 19]
that 1-1 sorting (1 key per healthy and connected proces-
sor) in row-major or snakelike row-major order can be per-
formed in 3n+ o(n) communication and comparison steps
on an n x n mesh (without any bypass capacity) with an ar-
bitrary pattern of o(+/n) faults. In[18], we further improved
the sorting time to 2.5n + o(n) communication steps and
2n+ o(n) comparison steps using a different ordering (i.e.,
avariant of blockwise snakelike order), which is asymptot-
ically as fast as the fastest sorting algorithm for fault-free
meshes (within afactor of 1+ o(1)). These results demon-
strate that somefairly complex problemssuch as sorting can
be solved by faulty meshesin times comparableto those re-
quired in fault-free meshes. Several other robust algorithms
or fault tolerance schemes can be foundin [3, 6, 14].

In spite of the aforementioned positive results, it isim-
practical to redesign all algorithms one by one for faulty
meshes and tori; hence, the motivation to devise a system-
atic method for transforming ordinary algorithms for fault-
freenetworksto obtainfast (with asl owdown factor nomore
than 1+ o(1)) and easy-to-implement robust algorithms. No
such transformation method has been reported in the litera-
ture thus far. One general fault tolerance scheme along this
line was devised by Cole, Maggs, and Sitaraman [5], who
showed that an n x n mesh can be emulated with constant
slowdown on an n x n mesh that has n'—¢ faulty processors
for any fixed € > 0. Thisresult is of great theoretical impor-
tance. However, their proposed emulation scheme is quite



complicated, leading to difficult implementation issues, and
comes with huge performance penalties in practice, given
the significant increase in the leading constants of the run-
ning times. We aim to develop another general emulation
schemethat is far more efficient.

We propose the robust algorithm-configured emulation
(RACE) scheme for fault-tolerant parallel computation and
communication without relying on hardware redundancy.
The RACE scheme essentially adds an “adaptation layer”
between ordinary agorithms and the faulty network. From
the algorithm point of view, the adaptation layer located on
top of the hardware layer hides the faulty processors and/or
linksfromthe algorithms, so that avirtual fault-freenetwork
is provided to higher layers and ordinary algorithms can be
executed on such a platform without modifications; from
the network point of view, the adaptation layer incorporates
fault tolerance into the design of algorithms based on vir-
tual subgraph embeddings, so that the RACE schemein ef-
fect transformsordinary algorithmsto corresponding robust
algorithms that can run on faulty networks. The resultant
robust algorithms usually have negligible degradation com-
pared to fault-free systems (e.g., a factor of 1+ o(1) slow-
down), and arerel atively easy to implement after reconfigu-
rationis performed, which only needsto bedoneonceafter a
fault occursor isrecovered from. Also, when the number of
faultsis small, reconfiguration for RACE can be performed
inashort time, and possible configurationsfor different pat-
ternsof faults may be precomputed and stored, if so desired,
in a distributed manner and broadcast when needed. More-
over, the RACE scheme can work in combination with pre-
vious hardware-based fault tol erance schemes, by executing
ordinary algorithms when the number of faults has not ex-
ceeded the limit of the hardwarefault tolerance scheme, and
executing robust algorithms otherwise.

2. Faulty arrays, emulation, and routing

In this section, we define the notion of virtual subar-
rays (VSA) in faulty arrays (with or without wraparound)
and introducethe RACE scheme, an efficient fault tolerance
scheme for computing and communication on faulty arrays
without relying on hardware redundancy.

2.1. Virtual subarraysand reconfiguration

A virtual subarray (VSA) of ad-dimensional faulty array
(with or without wraparound) is obtained by embedding a
smaller d-dimensional array init, wherethe embedded rows
of the same dimension do not overlap and the embedded
nodes and links are mapped onto healthy nodes and paths
(SeeFig. 1a). More precisely, each node of this smaller ar-
ray is mapped onto a different healthy node of the faulty ar-
ray; each link of this smaller array is mapped onto a healthy
path of the faulty array. The embedded rows (or columns)
of acertain dimensioni, i = 1,2,...,d, do not overlap with

o.oooo
020X O
OROOROO
—-6-OCa000 K

O—OZX?O!X}I—.
O—10—-O0—1—-0-0 X

(@

Figure 1. (a) A 3-by-4 VSM in a faulty 6-by-
7 mesh with 9 faults. (b) Virtual rows of the
VSM. (c) Virtual columns of the VSM.

each other, and are called dimension-i virtual rows (or vir-
tual columns) of the virtual subarray. Figures 1b and 1c
show the virtual rows and virtual columns of a 3 x 4 virtual
subarray.

Node (X1, X, -..,Xq) Of the virtual subarray (called a VSA
node) is located at the intersection of virtual row x; of di-
mension 1, virtual row x, of dimension 2, ... , and virtua
row xq of dimension d. Note that the virtual rows of dif-
ferent dimensions are allowed to have more than one node
in common, in which case we select one of the nodes at the
intersection either arbitrarily or according to certain criteria
(e.g., minimizing the dilation of the resultant embedding).
Then, VSA nodes (X, ..., X1, X, Xi+1, ---,Xq) for certainx;,
j#i,andal x, =1,2,...,m form adimension-i row of the
virtual subarray that has length equal to m; and is called a
VSArow. Thenodesof aVSA row form a subset of the cor-
responding dimension-i virtual row. Figure lashowsa3x 4
virtual subarray in an array with 9 faults and the associated
V SA nodes.

A virtual submesh (VSM) is a virtual subarray without
wraparound; a virtual subtorus (VST) is a virtual subarray
with wraparound. A congestion-free virtual subarray is a
virtual subarray embedded in a faulty array with load and
congestion both equal to 1 [9]. All the embedded links
of a congestion-free virtual subarray correspond to a set of
nonoverlapping paths in the faulty array. In other words, a
dimension-i virtual row intersectswith adimension-j virtual
row at exactly one node if i # j, while a virtual row does
not intersect with another virtua row of the same dimen-
sioni. Many important problems can be solved efficiently
on congestion-free virtual subarrays.

There usually exist many virtual subarraysin afaulty ar-
ray. In general, to achieve better performance, we prefer to
maximizethe number of VSA nodesand minimize, for each
dimension, the difference between the maximum length of
virtual rows and the length m; of aVSA row. The largest of
these differencesfor all dimensionsis called the width over-
head of thevirtual subarray. When there areo(n) faulty pro-
cessorsorlinksinad-Dnx nx --- x narray, itisguaranteed
that ad-D (n—o(n)) x (h—o0o(n)) x ---x (n—o(n)) virtual
subarray with width overhead o(n) exists. In what follows



we present asimpl e reconfiguration method for finding such
acongestion-freevirtual subarray in any N-nodefaulty array
with o(n) faults.

To reconfigure such a faulty array, we start with all the
fault-free rows and columns as the candidate virtual rows
and columns for a VSA. Then we check each of the candi-
date virtual rows and columns and determine whether it is
located at the same hyperplane (i.e., (d — 1)-D subarray) as
at least onefaulty processor or link. Finally, the VSA nodes
are selected at theintersections of the candidate virtual rows
and columns that pass the preceding examination (i.e., the
rows and columnsthat are not at the same hyperplaneas any
fault). Since the embedded links are digjoint, the resultant
VSA is acongestion-free virtual subarray. Also, the resul-
tant width overheadiso(n) sinceavirtual row or columncan
be “stretched” by only o(n) hops when we have o(n) faults.

Since the neighbors of a faulty processor or link can
broadcast the corresponding error messagesal ong all the hy-
perplanes to which the fault belongsin O(dn) time, broad-
casting f faults requires O(fdn) time in the worst case,
leading to o(dn?) time for reconfiguration. Note that, in
usual cases, reconfiguration using this simple method re-
quires©(dn) time since these broadcasting tasks can mostly
beexecutedin parallel. Morecomplicated methodsthat may
requiremoretime can also be used to find (somewhat) larger
virtual subarrays. Sincewe only need to reconfigureafaulty
array once after anew processor failsor recovers, the degra-
dation of system performance due to such areconfiguration
is negligible in usual cases, regardless of whether asimple
or complicated method is used.

2.2. The RACE scheme

In this subsection we present the RACE scheme, which
redistributes the data on a faulty network to a virtual sub-
graph(e.g.,anmy x m, X - - - X My Vvirtual subarray of afaulty
array), and then uses the virtual subgraph to emulate algo-
rithms developed for a fault-free network. We also present
the stepwise emulation technique (SET) for running array
algorithms on virtual subarrays.

Let M bethetotal number of dataitemsin thevirtual sub-
array and a be the load, which is the maximum number of
items per processor. We then have

2=
NLym

whenthe dataare spread approximately evenly onthevirtual
subarray. When there are @ dataitems per healthy and con-
nected processor of the faulty mesh and the number of faults
is not large, we usually have load a = @ + 1. The load for
thevirtual submeshinFig. 1is3, assuminga’ = 1 dataitem
per healthy processor in thefaulty mesh. If M dataitemsare
input/output to/from each healthy and connected processor,
then we in general prefer to select a virtual submesh which
minimizestheload a aswell asthe number of dummy items

required. In atypical situation where the number of faults
is smaller (e.g., o(n)), the load factor is usually increased
by afactor of about 1/a’ only, and most healthy processors
(e.g., asymptotically 100 — 0(1)%) are utilized and only a
few healthy processors (e.g., 0(1)%) are wasted. Moreover,
avirtual subarray with asymptotically the same size (within
afactor of 1+ 0(1)) as the entire array can be found using
the simple method of Subsection 2.1 that involvesfault-free
rows and columnsonly, and isthus very easy to implement.

We assume that a preprocessing stage hasidentified (per-
haps at reconfiguration time) a virtual subgraph to be used.
Then the proposed RACE scheme for transforming ordi-
nary algorithms to robust algorithms can be represented in
3 stages:

The emulation scheme

e Stage 1. The data items to be processed are redis-
tributed evenly to the processors on the virtual sub-
graph such that a processor has at most a items. On
the virtual subgraph, a processor that has fewer than a
items may pad its list with suitable “dummy item(s)”
(e.g., o for sorting).

e Stage 2: The virtual subgraph emulates a correspond-
ing agorithm for a fault-free subgraph (e.g., an m; x
mp X --- X My array), each processor of which has at
most a items.

e Stage 3: The results are redistributed back to healthy
processorsof the original faulty network (e.g., theny x
ny x --- x Ng faulty array).

The virtual subgraph is typically an embedded graph of
the same type with a smaller dimension (e.g., an embedded
submesh in a faulty mesh or an embedded smaller hierar-
chical swap network in a faulty hierarchical swap network
[17]); but it may also be an embedded graph of a different
type than the original faulty graph, such as an embedded
virtual subtorous in a faulty n-ary d-cube or an embedded
virtual submesh in a faulty torus. An important feature of
RACE isthat the virtual subgraph used in RACE can be an
embedded subgraph with dilation and/or congestion larger
than 1. Thisis different from the strategy used in several
previous papers for fault tolerance, which assumesthe exis-
tence of asmaller completemesh or an actual CCC subgraph
or generalized Fibonacci cube (with dilation, congestion,
and expansionall equal to 1) existsinafaulty mesh or hyper-
cube. Note that such a strategy limits the number of faults
tolerable (e.g., to as small as 3 in [7]). Our results show
that thisrestrictionisnot necessary for therobust algorithms
to have reasonable performance, at least for fault tolerance
in meshes, tori, n-ary d-cubes, and some index-permutation
graphs [17]. The embedded subgraphs for RACE should,



however, still be carefully designed with certain looser re-
gtrictions (such asthe onesfor VSA) inorder to achieve neg-
ligible dowdown.

Stage 2 of the RACE scheme can be implemented using
the stepwise emulation technique (SET), which directly em-
ulates a transmission over the dimension-i link of a proces-
sor by sending the data item along the dimension-i virtual
row to which the processor belongs. If the virtual subarray
isacompletearray (that is, no faulty processor existswithin
it and the embedded smaller array hasdilation 1), no degra-
dation is caused by Stage 2 using this naive method. Un-
der wormhole or cut-through routing, or packet-switching
with a large load, the overhead caused by Stage 2, when
implemented with SET, is negligible. Also, many algo-
rithms, such as semigroup and prefix computations[11], can
be emulated using SET with small overhead even if packet-
switching is employed and the load is as small as 1.

The stepwise emulation technique, combined with the
phase synchronization discipline (to be introduced in Sec-
tion 3), will be used to formulate Theorem 3.1 for fault-
tolerant computing on congestion-free virtual subarrays.
We can also use techniques other than SET to implement
Stage 2 of the RACE scheme. One example is the com-
paction/expansion technique used in [19]. Efficient imple-
mentation of Stages 1 and 3 leads to Theorem 4.2, derived
in Section 4. A wide variety of important problems can then
be solved efficiently in faulty arrays based on the RACE
scheme, either utilizing al healthy processors or only pro-
cessors on avirtual subarray.

2.3. Deadlock-free X"Y’ routingin virtual subarrays

Deadlock-free routing in a virtual subarray can be per-
formed using a smple extension of XY routing. In a2-D
mesh, we first send a packet along the virtual row (i.e., in
the X’ direction) to which the source node belongs (Step 1),
and then send it along the virtual column (i.e., inthe Y’ di-
rection) to which the destination node belongs (Step 2). As
long asthereareat least two virtual channelsper link, wecan
avoid deadlocks by using virtual channel 1 for transmitting
packetsinthe X direction during Step 1 orinthe'Y direction
during Step 2, and using virtual channel 2 for transmitting
packetsin the Y direction during Step 1 or in the X direc-
tion during Step 2. It can be verified that no cyclic depen-
dency will arise so that wormhole routing is deadlock-free
using this“X’Y’ routing” strategy.

XY routing can be easily extended to higher dimensional
arrays. To obtain adeadlock-freerouting schemefor theen-
tire faulty array, we can use spanning trees to connect the
remaining nodes to nodes on the virtual subarray, and then
use the virtual subarray as a “backbone’ to route packets.
Using RACE, the stepwise emulation technique, and XY’
routing (or the strategy discussed previoudly that usesvirtual
channels), most ordinary wormhole-routing or virtual cut-
through algorithms that have been devel oped without con-

sidering fault tolerance issues can be transformed into effi-
cient robust algorithms. Thedetailsare omittedin thispaper.
Inthefollowing sections, we demonstrate how more compli-
cated algorithms, based on either store-and-forward packet
switching, virtual cut-through, and/or wormhole-routing,
can be transformed into robust algorithms through virtual
subarrays and RACE.

3. Fault-tolerant computing on VSAs

In this section we consider a specia application of the
RACE scheme where data items are input/output to/from
VSA nodes.

3.1 Robust algorithmsfor congestion-free VSAs

In this subsection, we focus on a specific class of algo-
rithms which perform an average of S consecutive routing
steps along each of the dimensionswithout any computation
step in between, where links of some/all dimensions can be
used at asingle step. We propose the phase synchronization
disciplineand show that such algorithms can be emulated on
congestion-freevirtual subarrayswith negligible slowdown
under this discipline and the RACE scheme.

With the phase synchronization discipline, all nodessim-
ply synchronize at the end of a phase (which may perform
certain computation steps). If there exists a congestion-free
My X My X --- X My Virtual subarray whose width overhead
is0o(S), then the average dowdown factor for each phaseis
1+ o(1) relative to a fault-free my x My x --- x my array
of the same type. This is because routing along a dimen-
sion of acongestion-freevirtual subarray isonly delayed by
0(S) steps additively. Moreover, if nodes synchronize at the
end of each phase, the interaction between delayed packets
will never cause excessive accumulation of delay on certain
packets, since the delay of one phase has no effect on the
next phase. The RACE scheme under the phase synchro-
nization discipline is easy to implement and is powerful in
that many important robust communication and computa-
tion algorithms can be performed with a factor of 1+ o(1)
dowdown, as indicated in the following theorem and corol-
laries.

Theorem 3.1 If an algorithm for an array (i.e., mesh or
torus) performs an average of S consecutive routing steps
along some/all of the dimensions (at the same time under
the all-port communication model) without any computa-
tion step in between, and there exists a congestion-freemy x
M, X --- X My virtual subarray whose width overhead is
0(S), then the slowdown factor for performing thealgorithm
on a virtual subarray of the faulty array is 1+ o(1) relative
to a fault-free my x mp x - - - x My array of the same type.

When the number of faulty processors and/or links in
an N-node n; X Ny X --- X Ny array is o(Nmin/d), where



Nmin = MiN(Ng, N, ..., Ng), itisalwayseasy to find at least an
(N1 — 0(Nin/d)) % (N2 — 0(Nprin/d)) x -+ (Ng — 0(Nprin/d))
congestion-freevirtual subarray (which hasN —o(N) nodes)
with width overhead o(nyin/d), leading to the following
corollary.

Corallary 3.2 If an algorithm for an (n; — o(Nyin/d)) x
(n2 — 0(Npin/d)) % --+ x (ng — 0(Npin/d)) array (i.e., mesh
or torus) performsan average of Sconsecutive routing steps
along a dimension (or along each of several or all dimen-
sions) without any computation step in between, and there
are o(min(S,nmin/d)) faulty processors in the n; x np x
---ng array, then the algorithm can be emulated on a vir-
tual subarray of the faulty array with a dowdown factor of
1+ o(1) relative to the time required for a fault-free (n; —
0(Nmin/d)) x (N2 — 0(Nmin/d)) X -+ (Ng — 0(Npin/d)) array
of the same type.

Note that the number of faulty processors and links that
can be tolerated in Theorem 3.1 and Corollary 3.2 for low-
dimensional arrays(i.e., small d) isnot small. For example,
an N-node 3-D mesh/toruscan tolerate ©(/N/ logN) faults
withthesize of thevirtual subarray being 1— o(1) timesthat
of the entire array.

Communication algorithms, such as unicast, broadcast,
total-exchange, and multinode broadcast, are at the heart of
many applications[1]. Based on Theorem 3.1 and Corollary
3.2, we can show that these communication tasks aswell as
avariety of other important algorithms can be executed on
congestion-freevirtual subarrayswith asowdown factor of
1+ o(1) relative to the corresponding completion timein a
fault-freearray. Thefollowing corollary is offered as an ex-
ample of the type of results that can be obtained from The-
orem 3.1 regarding the total -exchange communication task
[1] in faulty n-ary d-cubes.

Corollary 3.3 We can execute 2d instances of a TE task
in an n-ary d-cube that has an arbitrary pattern of o(n/d)
faulty processors and/or links in (N — 1)Daye = dnN/4 +
o(dnN) communication time, where D,y iSthe average dis-
tance of a fault-free (n — o(n/d))-ary d-cube, N = n? —
o(n9) is the size of the virtual (n— o(n/d))-ary d-subcube,
and data items are input/output to/from the virtual (n —
o(n/d))-ary d-subcube. Thiscommunicationtimeisasymp-
totically optimal within a factor of 1+ o(1).

Many other important computation problems can also
be performed efficiently based on Theorem 3.1. As
cend/descend algorithms, including FFT and permutation
routing, form an important subclass of such algorithms and
will beinvestigated in the following subsection for faulty n-
ary d-cubes.

3.2 Robust ascend/descend algorithms
on faulty n-ary d-cubes

Ascend/descend algorithms [9, 13] require successive
operations on data items that are separated by a distance
equal to a power of 2. Many applications, such as FFT,
bitonic sort, matrix multiplication, and convolution, can be
formulated using algorithms in this general category. Re-
duction (e.g., semigroup computation), parallel prefix com-
putation, and many other algorithms developed for hyper-
cubes and butterfly networks (e.g., broadcast algorithms)
can also beformulated as ascend/descend algorithmsor their
variants.

To execute an ascend algorithm in a fault-free mary d-
cube, where mis a power of 2, we simply send packets to
nodes1,2,4,...,m/2hopsaway along dimension 1, and then
send packets to nodes 1,2,4,...,m/2 hops away along di-
mension 2, and so on. Since the routing path between any
source-destination pair in an ascend/descend algorithm be-
longsto acertain dimension and does not contain any turns,
thelength of apathin afaulty n-ary d-cubewith width over-
head Woyerhead 1S increased by at most Woyerhead NOPS cOm-
pared to afault-free m-ary d-cube. From Theorem 3.1, when
Woverhead = 0(m/ logm), the slowdown factor for executing
an ascend algorithm on the virtual m-ary d-subcubeis only
1+ o(1) compared to afault-free m-ary d-cube. Moreover,
we can execute d ascend algorithms concurrently on the vir-
tual m-ary d-subcube by rotating the dimensions.

4. Robust algorithms utilizing the entire faulty
array

In Section 3, we have assumed that data items are in-
put/output to/from a virtual subarray. By combining Theo-
rem 3.1 with anagorithmfor performing dataredistribution
[16, 17, 18, 19], which moves data from healthy and con-
nected processors of the faulty array to the corresponding
processorsin thevirtual subarray in negligibletime, wefor-
mulate Theorem 4.2 for fault-tolerant computing and com-
munication on the entire faulty array (in contrast to comput-
ing on avirtual subarray, as required by Theorem 3.1).

Theorem 4.1 Dataredistributionfromad-Dnx ---narray

with o(nl‘%) faulty processors onto an appropriate virtual
subarray can be performed in o(hdn) steps, where his the
number of data items per healthy processor.

Theorem 4.2 Let T bethetotal time required for perform-
ing an algorithm on the fault-free array, where the algo-
rithmfor an array (i.e., mesh or torus) performsan average
of S consecutive routing steps along some/all of the dimen-
sions (at the same time under the all-port communication
model) without any computation step in between. [f there
existsan my x mp x --- X my virtual subarray whose width
overhead iso(S), data redistribution and itsinverse process



can be performed in o(T) time, and the virtual subarray is
congestion-free, then the owdown factor for performing
the algorithm on the entire faulty array, each healthy and
connected processor of which has at most h data items, is
1+ o(2) relative to a fault-freemy x mp x --- x my array of
the same type with load at most [h([L, m — )/ 1%, m.

When the number of faults is small and data items are
mapped to blocks of appropriate size nearby, it is guaran-
teed that a congestion-free virtual subarray exists and data
redistribution can be performedin negligibletime. Based on
Theorem 4.2 and Corollary 3.3, we can derivethefollowing
corollary.

Coroallary 4.3 Atotal of 2d — 1 (or 2d — o(d)) TE tasks can
be executed in an n-ary d-cubethat hasan arbitrary pattern
of f faulty processorsand/or linksin dnN/4+ o(dnN) com-
munication time, which isoptimal within a factor of 1+ o(1)

when d is not a constant, where f = o(min(n~,n/d?2))
(or f = o(min(n}~3,n/d)), respectively), N = nd — f is
the number of healthy processors, and data items are in-
put/output to/from each of the healthy and connected pro-
cessorsin the entire faulty n-ary d-cube.

If amessage can be split into 2dk — o(dk) packets with
any positive integer k, the time required to perform a sin-
gle TE task becomes nN/8 + o(nN) communication time
when d is not a constant, a message requires one time unit
for transmission, and apacket requires1/(2dk —o(dk)) time
unit for transmission. This time complexity is aso optimal
withinafactor of 1+ o(1) for both fault-freeand faulty n-ary
d-cubes.

5. Conclusion

In this paper, we have proposed the RACE scheme
for transforming ordinary algorithms to obtain efficient ro-
bust algorithms. Based on RACE, we derived the fastest
knownrobust algorithmsfor avariety of important problems
such astotal-exchangeand ascend/descend computationson
faulty arrays. The techniques used in this paper can also be
applied to a variety of other important problems in parallel
computation[1, 9, 12] and can be used to deriveefficient ro-
bust algorithmsfor other network topologies.

References

[1] Bertsekas, D.P. and J. Tsitsiklis, Parallel and Distributed
Computation — Numerical Methods, Athena Scientific, 1997.

[2] Bruck, J., R. Cypher, and C. Ho, “Fault-tolerant meshes and
hypercubes with minima numbers of spares,” |IEEE Trans.
Comput., vol. 42, no. 9, Sep. 1993, pp. 1089-1104.

[3] Bruck, J. and R. Cypher, and C.-H. Ho, “Wildcard dimen-
sions, coding theory and fault-tolerant meshes and hyper-
cubes,” |IEEE Trans. Comput., vol. 44, no. 1, Jan. 1995, pp.
150-155.

(4]

(5]

(6]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

Chen, Y.-Y., SJ. Upadhyaya, and C.-H. Cheng, A compre-
hensive reconfiguration scheme for fault-tolerant VL SI/WSI
array processors, |EEE Trans. Computers, Vol. 46, no. 12,
Dec. 1997, pp. 1363-1371.

Cole, R, B. Maggs, and R. Sitaraman, “Multi-scale self-
simulation: atechniquefor reconfiguring arrays with faults,”
ACM Symp. Theory of Computing, 1993, pp. 561-572.
Deconinck, G., V. De Florio, R. Lauwereins, and T.A. Var-
varigou, “EFTOS: a software framework for more depend-
able embedded HPC applications,” Proc. Annual European
Conf. Parallel Processing, 1997, pp. 1363-1368.

Jiang, F.-S., S.-J. Horng, and T.-W. Kao, “Embedding of gen-
eralized Fibonacci cubes in hypercubes with faulty nodes,”
|EEE Trans. on Parallel and Distributed Systems, Vol. 8, no.
7, dul. 1997, pp. 727-737.

Kaklamanis, C., A.R., Karlin, FT. Leighton, V. Milenkovic,
P. Eaghavan, S. Rao, C. Thomborson, and A. Tsantilas,
“Asymptotically tight bounds for computing with faulty ar-
rays of processors,” Proc. Symp. Foundations of Computer
Science, val. 1, 1990, pp. 285-296.

Leighton, F.T., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.

Parhami, B. and C.-Y. Hung, “Robust shearsort on incom-
plete bypass meshes,” Proc. Int’| Parallel Processing Symp.,
1995, pp 304-311.

Parhami, B. and C.-H. Yeh, “The robust-algorithm approach
to fault tolerance on processor arrays. fault models, fault di-
ameter, and basic algorithms,” Proc. First Merged Interna-
tional Parallel Processing Symposium and Symp. Parallel
and Distributed Processing, Apr. 1998, pp. 742-746.
Parhami, B., Introduction to Parallel Processing: Algorithms
and Architectures, Plenum Press, 1999.

Preparata, F.P. and J.E. Vuillemin, “The cube-connected cy-
cles: aversatile network for parallel computation,” Commu-
nications of the ACM, vol. 24, no. 5, May 1981, pp. 300-309.
Tzeng, N.-F. and G. Lin, “Maximum reconfiguration of 2-
D mesh systems with faults,” Proc. Int’l Conf. Parallel Pro-
cessing, vol. 1, 1996. pp. 77-84.

Varvarigou, T.A., V.P. Roychowdhury, and T. Kailath, “Re-
configuring processor arrays using multiple-track models:
the 3-track-1-spare-approach,” IEEE Trans. Computers, vol.
42, no. 11, Nov. 1993, pp. 1281-1293.

Yeh, C.-H. and B. Parhami, “Optimal sorting algorithms on
incomplete meshes with arbitrary fault patterns,” Proc. Int’l
Conf. Parallel Processing, Aug. 1997, pp. 4-11.

Yeh, C.-H., “Efficient low-degree interconnection networks
for parallel processing: topologies, algorithms, VLS lay-
outs, and fault tolerance,” Ph.D. dissertation, Dept. Electrical
& Computer Engineering, Univ. of California, SantaBarbara,
Mar. 1998.

Yeh, C.-H., B. Parhami, H. Lee, and E.A. Varvarigos, “2.5n-
step sorting on n x n meshes in the presence of o(/n) worst-
case faults,” Proc. Merged Int'l Parallel Processing Symp.
& Symp. Parallel and Distributed Processing, Apr. 1999, pp.
436-440.

Yeh, C.-H., and B. Parhami, “Efficient sorting algorithms on
incomplete meshes,” J. Parallel Distrib. Comput., to appear.



