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Abstract—Optical network design problems fall in the broad 
category of network optimization problems. We give a short 
introduction on network optimization and general algorithmic 
techniques that can be used to solve complex and difficult 
network design problems. We apply these techniques to address 
the static Routing and Wavelength Assignment problem that is 
related to planning phase of a WDM optical network. We present 
simulation result to evaluate the performance of the proposed 
algorithmic solution. 
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I.  INTRODUCTION (HEADING 1) 
Wavelength routed WDM is the most common architecture 

used for establishing communication in optical transport 
networks [1]. In wavelength routed WDM, data is transmitted 
through lightpaths; that is, all-optical WDM channels that may 
span multiple consecutive fibers. From the network 
perspective, establishing a lightpath for a new connection 
requires the selection of a route (path) and a free wavelength on 
the links that comprise the path. Since the lightpaths are the 
basic switched entities of a wavelength routed WDM network, 
their effective establishment and usage is crucial. Thus, it is 
important to propose efficient algorithms to select the routes for 
the requested connections and to assign wavelengths on each of 
the links along these routes, so as to optimize a certain 
performance metric. This is known as the routing and 
wavelength assignment (abbreviated RWA) problem. The 
constraints are that paths that share common links are not 
assigned the same wavelength (distinct wavelength 
assignment). Also a lightpath, in the absence of wavelength 
converters, must be assigned a common wavelength on all the 
links it traverses (wavelength continuity constraint).  

The RWA problem is usually considered under two 
alternative traffic models. When the set of connection requests 
is known in advance (for example, given in the form of a static 
traffic matrix) the problem is referred to as offline or static 
RWA. In this case the network is configured based on the 
traffic it is predicted to handle and thus this phase is related to 
the planning phase of the WDM network. In the operational 
phase, new lightpath requests arrive dynamically, at random 
times, and they have to be established upon their arrival, one by 
one, taking into account the current utilization state of the 
network, that is, the previously established lightpaths. This 
problem is referred to as online or dynamic RWA.  

Offline and online RWA problems fall in the general and 
broad category of network optimization problems. We will 
focus our study on the planning phase of the WDM network, on 
offline RWA, which is known to be a NP-hard problem [2]. 
Offline RWA is more difficult than online RWA, since it aims 
at jointly optimizing the lightpaths used by the connections, in 

the same way that the multicommodity integer flow problem is 
more difficult than the shortest path problem in general 
networks. Network optimization problems ranges from simple 
problems such as shortest-path, max-flow, minimum spanning 
tree, etc. up to more complicated problems, such as 
multicommodity integer flow, graph coloring, traveling 
salesman, etc. With respect to optical networks, apart from the 
typical and pure RWA problem [3], there are also a number of 
other optimization problems, such as the traffic grooming 
problem [4], the impairment-aware RWA problem [5], the time 
scheduling of connections problem [6], and many more.  

For a large number of network optimization problems there 
have been developed specific algorithms that can solve 
efficiently the specific problem under study [7]. However, for 
the more complex network optimization problems it is rather 
difficult to find and develop good algorithms. In those cases a 
solution can be found by using the general algorithms that have 
been developed in optimization theory.  

In this paper we will present some general algorithms and 
techniques that can be used to solve a large number of network 
optimization problems and in particular we will try to focus on 
complex and difficult problems. Then we will apply these 
techniques to solve the planning problem of a WDM network, 
that is, we will address the offline RWA problem.  

II. NETWORK OPTIMIZATION 

A. General Optimization Problem 
The general optimization problem is defined as follows: 

   minimize (or maximize)    f0(x)     
  subject to   fi(x) ≤ bi, i =1,...,m, 

where x = (x1,...,xn) ∈Rn are the optimization variables,  f0 : Rn 
→ R is the optimization function, and fi : Rn → R, i =1,...,m are 
the constraint functions.  

In general, optimization problems are hard to solve, but 
there are certain problems that we know algorithms that can be 
used to find the optimal solution in efficient time. Also, even 
for some hard problems we know good algorithms that can help 
us to optimally solve small to medium size problems. Note that, 
in the context of this paper we will assume that an algorithm is 
efficient if it can find the solution in polynomial time. We say 
that an algorithm runs in polynomial time if the number of 
elementary steps taken by the algorithm on any instance I of the 
input is bounded by a polynomial on the size of I. On the 
contrary, we will assume that algorithms that run in exponential 
time on the size of the input are not efficient. A problem is 
provably difficult if it belongs to the class of NP-complete 
problems, for which no polynomial time algorithms are known. 

In the following we will examine some specific cases of the 
general class of optimization problem that can be used to 
formulate a large number of network optimization problems. 



We will comment on the algorithms and techniques that can be 
used to solve these specific classes of problems and we will 
then apply these techniques and present our solution to the 
offline routing and wavelength assignment (RWA) problem. 

B. Linear Programming 
The general linear programming (LP) optimization problem 

is defined as follows: 

minimize (or maximize)      cT . x  
            subject to   A . x ≤ b, x = (x1,...,xn) ∈ Rn,  

where A is a mxn matrix, and c and b are vectors of size n and 
m respectively. With respect to the general optimization 
problem presented in Section II.A we can see that optimization 
function f0 and constraints fi, i=1,…,m are all linear on x.  

Figure 1 displays an example of a linear optimization 
problem with two variables and the corresponding geometrical 
representation. A linear constraint corresponds to a line in the 
two dimensional plain, and the set of constraints define the 
feasible region that is colored grey in the geometric 
representation. The optimal solution is the point (2.5,2.5) that 
corresponds to a vertex of the feasible region. In the general n-
dimensional optimization problem (n corresponds to the 
number of optimization variables, that is the dimension of 
vector x), the feasible region forms a convex n-dimensional 
polyhedron. Since the objective function is also linear, all local 
optima are automatically global optima. The linear objective 
function also implies that an optimal solution can only occur at 
a boundary point of the feasible region, so there is an optimal 
solution on a vertex of the feasible region polyhedron [9].  

 

     

Maximize 
3x1+2x2

 
Figure 1.  A LP problem example. 

A number of algorithms have been developed to solve the 
general LP problem. Simplex algorithm developed in 1947 by 
Dantzig, moves from vertex to vertex of the feasible region (the 
n-dimensional polyhedron), going always to a vertex with a 
better or equal objective cost (higher or lower for maximization 
or minimization problems, respectively), and certain extensions 
have been developed to avoid circles. Although Simplex 
algorithm is efficient for the majority of inputs, problems have 
been constructed that Simplex takes exponential time to solve. 
Algorithms such as the Elliptic and Interior Point that were 
later developed can provably solve in polynomial time any LP 
input instance, that is, even in the worst case their running time 
is polynomial bounded on the size of the input. Still Simplex is 
used in many cases since it has good average running times, 
while at certain cases Inferior-Point is also very efficient. 

Many known network optimization problems can be 
formulated as LP problems and solved using Simplex or 
another LP algorithm. Figures 2 and 3 display two such 
examples. Note that the second example that presents the 
multicommodity flow problem becomes difficult to solve if we 
require the flows that are used to be integers. We will address 
such problems in the next paragraph. 
 

      
Figure 2.  Maximum flow problem. 

     
Figure 3.  Multicommodity flow problem. 

C. Integer Linear Programming 
The general integer linear programming (ILP) optimization 

problem is defined as follows: 

minimize     cT . x  
            subject to   A . x ≤ b, x = (x1,...,xn) ∈ Zn , 

where A is a mxn matrix, and c and b are vectors of size n and 
m respectively. Compared to the general linear optimization 
problem presented in Section III.B we can see that the only 
difference is that the variables x are now constrained to take 
only integer values, instead of real values. Figure 4 presents 
the corresponding ILP problem of Figure 1. 
 

     

cost
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3x1 + 2x2

 
Figure 4.  ILP problem that corresponds to the example of Figure 1. 

The general ILP problem is difficult to solve. The optimal 
solutions are not anymore at the vertices of the feasible region, 
as is the case for LP problems, and LP algorithms such as 
Simplex or Interior Point cannot be used to find an ILP optimal 
solution. The general ILP problem falls in the category of NP-
complete problems and, up until today, there are not known 
efficient algorithm to solve these problems. Note that if only 
some of the variables are required to be integers, then the 
problem is called a mixed integer programming (MIP) 
problem. These are generally also NP-complete. 

Branch-and-bound and cutting plane techniques can be used 
to solve small and medium size ILP problems. However these 
techniques do not scale well, since their running time is 
exponential to the size of the input. The branch-and-bound 
technique is based on a sophisticated enumeration of all integer 
solutions, which explores the solution space in a tree-like 
structure. Typically, branch-and-bound stops the exploration of 
a certain area of the solution space, if this area would not 
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produce a better solution than the one already found. Cutting-
plane technique reduces the feasible solution space in a way 
that the optimal integer solutions are not discarded, by adding 
constraints, and stops when an optimal solution is located at a 
vertex of the feasible region. More information about these 
techniques can be found in [9]. Commercial ILP solvers utilize 
both these techniques in branch-and-cut variations so as to 
combine their advantages and provide effective solutions to 
small and medium size ILP problems. 

D. Connection of ILP and LP 
1) LP-relaxation  

Assume an ILP problem which is, as stated before, difficult 
to solve (no known polynomial time algorithms exist). Instead 
of solving this ILP problem we can solve the same problem 
without constraining the variables to take integer values (for 
example instead of solving the problem presented in Figure 4 
we solve the problem of Figure 1). The corresponding problem 
is called the LP-relaxation of the ILP problem. As shortly 
discussed previously, the related LP problem can be solved 
efficiently using e.g. Simplex or Interior Point algorithms. 

Solving the related LP-relaxation problem can be quite 
beneficial. First of all, if the solution happens to be integer, that 
is, if all the optimization variables take integer values, then we 
have found an optimal solution for the initial ILP problem. 
Although this might seem improbable (except for some special 
cases e.g., problems with totally unimodular matrix 
specifications), there are certain techniques and rules to wirte 
ILP formulations that can increase this probability. We will 
discuss this more latter in the paper. Moreover, solving the LP-
relaxation gives a lower or upper bound on the objective cost 
for the initial ILP problem, depending on whether we have a 
minimization or maximization problem, respectively. Indeed, if 
there was a better integer solution (a solution to the initial ILP 
problem), it would have been found, since it would also be an 
optimal solution for the corresponding LP-relaxation problem. 
The branch-and-bound technique uses the LP-relaxation to 
calculate the objective lower (or upper) bound of a 
subtree/branch of the solution tree (a feasible solution subarea). 
It considers these bounds in order to decide the search ordering 
and also stops the exploration of a certain subtree/branch if its 
lower (upper) bound is higher than the optimal solution already 
found by the algorithm. Finally, given the solution of the LP-
relaxation problem we can use rounding methods, such as 
randomized rounding, to obtain good and approximate 
solutions for the initial ILP problem. 

2) Convex Hull  
Assuming an ILP optimization problem, the same set of 

integer solutions can be described by different sets of 
constraints. Having in mind the geometrical representation of 
the feasible region we can visualize the set of integer solutions 
to be included in different-shaped n-dimensional polyhedrons. 
Figures 5 (a) and (b) show an example of an ILP problem that 
has the same integer solutions but is described by a different set 
of linear constraints. The convex hull is the minimum convex 
set that includes all the integer solutions of the problem (see 
Figure 5(c)). If we have the convex hull we can use LP 
algorithms to optimally solve the related ILP problem in 
polynomial time. However, it is difficult to define the set of 
constraints that would give us the convex hull of an ILP 
problem. Moreover, the transformation of a general n-
dimension polyhedron to the corresponding convex hull is 
difficult (and is the process that is used in cutting plane 
techniques). 

 

 

 
Figure 5.  Integer solution set and Convex Hull. 

3) Good ILP formulations 
Based on the above, we can say that an ILP formulation is 

good if its feasible region that is defined by its linear 
constraints is close (tight) to the corresponding integer convex 
hull. If this happens then the branch-and-bound and cutting 
plane techniques can help us solve quickly and efficiently the 
corresponding ILP problem. Moreover, an ILP formulation 
with feasible region that is tight to the convex hull would have 
a large number of vertices that consist of integer variables. This 
could increase the probability of obtaining an integer solution 
when solving the LP-relaxation of the initial ILP problem. For 
general rules on how to write good ILP formulations the reader 
is referred to [10]. In what follows we present such a 
formulation to solve the offline RWA problem.  

III. ROUTING AND WAVELENTH ASSIGNMENT PROBLEM 
In this section we are going to apply the general algorithms 

and techniques that were presented in the previous section in 
order to solve the offline RWA problem.  

A network topology is represented by a connected graph 
G=(V,E). V denotes the set of nodes, which we assume not to 
be equipped with wavelength conversion capabilities. E 
denotes the set of (point-to-point) single-fiber links. Each fiber 
is able to support a common set C={1,2,…,W} of W distinct 
wavelengths. The static version of RWA problem assumes an 
a-priori known traffic scenario given in the form of a matrix of 
non-negative integers Λ, called the traffic matrix. Then, Λsd 
denotes the number of requested wavelengths from source s to 
destination d.  

The algorithm takes as input a specific RWA instance; that 
is, a network topology, the set of wavelengths that can be used, 
and a traffic matrix. It returns the RWA instance solution, in 
the form of routed lightpaths (paths and wavelengths), as well 
as the blocking probability, in case the connection requests 
cannot be served for the given set of wavelengths. 

A. RWA LP-based algorithm 
The proposed RWA algorithm consists of four phases [5]. 

The first (pre-processing) phase computes a set of candidate 
paths to route the requested connections. RWA algorithms that 
do not use any set of predefined paths, but allow routing over 
any feasible path have also been proposed in the literature. 
These algorithms are bound to give at least as good solutions as 
the algorithms that use pre-calculated paths, such as the one 
presented here, but use a much higher number of variables and 
constraints and do not scale well. In any case, the optimal 
solution can be also found with a RWA algorithm that uses pre-
calculate paths, given a large enough set of paths. In particular, 
k candidate paths for each requested connection are calculated. 
After a set Psd of candidate paths for each commodity pair s−d 
is computed, the total set s d sdP P−= ∪  is inserted to the next 
phase of the algorithm. The pre-processing phase clearly takes 
polynomial time. The second phase of the proposed algorithm 
formulates the given RWA instance as a linear program (LP). 

(a)                                (b)                                 (c) 



The LP is solved using the Simplex algorithm that is generally 
considered efficient for the great majority of all possible inputs, 
and has additional advantages, as we will see, for the problem 
at hand. If the solution returned by Simplex is not integer, the 
third phase uses iterative fixing and rounding techniques to 
obtain an integer solution. Note that a non integer solution is 
not acceptable, since a connection is not allowed to bifurcate 
between alternative paths or wavelength channels. Finally, 
phase 4 handles the infeasible instances, so that some (if all is 
not possible) requested connections are established.  

In what follows we focus on the second and the third phase 
of the algorithm. 

B. RWA LP formulation using piecewise linear cost function 
The proposed LP formulation aims at minimizing the 

maximum resource usage, in terms of wavelengths used on 
network links. Let Fl=f(wl) denote the flow cost function, an 
increasing function on the number of lightpaths wl traversing 
link l (the used formula is presented in the next subsection). 
The LP objective is to minimize the sum of all Fl values. The 
following parameters, constants and variables are used: 

 

Parameters: 
• s,d ∈V: network nodes 
• w∈C: an available wavelength 
• l ∈E: a network link 
• p∈Psd: a candidate path 
 

Constant: 
• Λsd: the number of requested connections from node s to d 
 

Variables: 
• xpw: an indicator variable, equal to 1 if path p occupies 

wavelength w, that is if lightpath (p,w) is activated, and 
equal to 0, otherwise 

• Fl: the flow cost function value of link l 
 

 

Minimize : l
l

F∑  

subject to the following constraints: 
 

• Distinct wavelength assignment constraints,  

{ }|
1,pw

p l p
x

∈

≤∑  for all l∈E and all w∈C 

• Incoming traffic constraints, 

sd

pw sd
p P w

x
∈

= Λ∑ ∑ , for all (s,d) pairs 

• Flow cost function constraints, 
( )

{ }( )|
l l pw

p l p w
F f w f x

∈

≥ = ∑ ∑ , for all l∈E 

• The integrality constraints are relaxed to 
0 1pwx≤ ≤  for all p∈P and all w∈C 

Note that the wavelength continuity constraints are 
implicitly taken into account by the definition of the path-
related variables.  

Flow Cost Function 
The variable Fl expresses the cost of congestion on link l, 

for a specific selection of the routes. We choose Fl to be a 
properly increasing function f(wl) of the number of lightpaths 

{ }|l pwp l p w
w x

∈
= ∑ ∑  crossing link l. Fl = f(wl) is chosen to 

also be strictly convex (instead of, e.g., linear), implying a 
greater degree of ‘undesirability’, when a link becomes highly 
congested. This is because it is preferable, in terms of overall 
network performance, to serve an additional unit of flow using 
several low-congested links than using a link that is close to 
saturation. In particular, we utilize the following flow cost 
function: 

( )
1

l
l l

l

wF f w
W w

= =
+ −

, 0 ≤ wl ≤ W 

  

The above (nonlinear) function is inserted to the LP in the 
approximate form of a piecewise linear function; i.e., a 
continuous function, that consists of W consecutive linear parts 
(Figure 6). Since the LP objective is to minimize the cost 

ll
F∑ , for a specific value of wl, one of these W linear cost 

functions, and in particular the one that yields the highest 
Fl(wl), is satisfied with equality at the optimal solution of the 
LP. All the remaining linear functions are de-activated, that is, 
they are satisfied as strict inequalities at the optimal solution. 

 
Figure 6.  The set of linear constraints that are inserted in the LP formulation. 
We use inequality constraints to limit our search in the colored area. Since the 
objective that is minimized is the flow cost, we finally search for solutions 
only at its lower bounds, which identify the piecewise linear approximation of 
the flow cost function Fl=f(wl) (black line). 

 

This piecewise linear function is equal to the nonlinear 
function Fl=f(wl) at integer argument values (wl=1,2,…,W) and 
greater than that at other (fractional) argument values. 
Inserting such a piecewise linear function to the LP objective, 
results in the identification of integer optimal solutions by 
Simplex, in most cases [8]. This is because the vertices of the 

polyhedron defined by the constraints tend to correspond to 
the corner points of the piecewise linear function and tend to 
consist also of integer components. Since the Simplex 
algorithm moves from vertex to vertex of that polyhedron, 
there is a higher probability of obtaining integer solutions than 
using other methods (e.g., Interior Point methods).  

C. Random Perturbation 
In the general multicommodity flow problem, given an 

optimal fractional solution, a flow that is served by more than 
one path has equal sum of first derivatives of the costs of the 
links comprising these paths [11]. To be more precise, assume 
a general multicommodity minimization problem  

 

minimize D(x), 
 

subject to x∈X, 
 

where x=(x1,x2…,xn) is a solution consisting of n flow 
variables, and D is a differentiable convex function. Now 



assume that we have an optimal solution x* and let xp≠0 and 
xp’≠0 be two variables carrying fractional flows that both serve 
the same source-destination pair. If we move a small fraction 
of flow δ>0 from xp to xp’, so as to obtain xp-δ and xp’+δ for the 
corresponding flow values, the increase ΔD in the objective 
cost would be 

'

( ) ( ) .
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D DD
x x
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For x* to be optimal, ΔD should be greater than or equal to 
zero, so that such a shifting of flow from one path to the other 
does not increase the objective cost. A similar argument can be 
made by assuming that flow δ is moved from xp’ to xp. 
Therefore, the following relation must hold at the optimal 
solution when both flows xp and xp’ are nonzero 
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indicating that at an optimal solution, a flow that is served by 
more than one paths must have equal sums of their first 
derivative lengths over the corresponding paths.  

 

Now if we turn our attention to the RWA problem that we 
examine, a flow variable corresponds to a candidate lightpath 
(p,w). The objective function D(x) that we utilize in our RWA 
formulations sums the flow costs of the links that comprise a 
lightpath, and thus a request served by more than one lightpath 
has equal sums of first derivates over the links of these 
lightpaths. The derivative of the cost on a specific link is given 
by the slope of the linear or piecewise linear flow cost function 
that we utilize. To make this more precise, let two lightpaths 
xp,w and xp’,w’ serve a connection request. Also let al be the 
slope of the flow cost f(wl) on link l for a given solution. At an 
optimal solution where xp,w and xp’,w’ are both nonzero and both 
serve the same source-destination pair, the following holds: 
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To increase the number of integer solutions obtained, we 
use the following random perturbation technique. To make the 
situations where two lightpaths have equal first derivative 
lengths over the links that comprise them less probable, and 
thus obtain more integer solutions, we multiply the slopes on 
each link with a random number that differ to 1 in the sixth 
decimal digit. Thus, we defining different slopes al,pw for each 
lightpath (p,w) and for each link l∈E. 

D. Iterrative Fixing and Rounding Teqniques 
If even with the piecewise linear cost function and the 

random perturbation technique presented above we do not 
obtain an integer solution we continue by “fixing” and 
“rounding” the variables. 

We start by fixing the variables; that is, we treat the 
variables that are integer as final, and solve the reduced 
problem for the remaining variables. Fixing variables does not 
change the objective cost returned by the LP, so we move with 
each fixing from the previous solution to a solution with equal 
or more integers with the same cost. Since the objective cost 
does not change, if after successive fixings we reach an all-
integer solution we are sure that it is an optimal one. On the 
other hand, fixing variables is not guaranteed to return an 
integer optimal solution, if one exists, since the integer 

solution might consist of different integer values than the ones 
gradually fixed. When we reach a point beyond which the 
process of fixing does not increase the integrality of the 
solution, we proceed to the rounding process. We round a 
single variable, the one closest to 1, and continue solving the 
reduced LP problem. While fixing variables helps us move to 
solutions that have more integer variables and the same value 
of the objective cost, rounding makes us move to higher 
objective values and search for an integer solution there. 
Rounding is inevitable when there is no integer solution with 
the same objective cost as the LP-relaxation of the RWA 
instance. However, if after rounding the objective cost changes 
we are not sure anymore that we will end up with an optimal 
solution. Note that the maximum number of fixing and 
rounding iterations is the number of connection requests which 
is polynomial on the size of the problem input. 

E. IA-RWA 
In transparent or translucent WDM networks, where 

lightpaths remain in the optical domain for more than one link, 
physical layer impairments affect the quality of transmission 
(QoT) of a lightpath. The interdependence between the 
physical and the network layers makes the RWA problem in 
the presence of physical impairments a cross-layer 
optimization problem. To address this, a number of 
approaches are emerging, usually referred to as impairment-
aware (IA)-RWA algorithms. The reader is referred to [5] for a 
detailed description of the offline IA-RWA problem. 

IV. PERFORMANCE RESULTS 
To evaluate the performance of the proposed RWA 

algorithm we carried out a number of simulation experiments. 
We implemented the algorithm in Matlab and used LINDO 
[12] to solve the corresponding LP and ILP problems. We 
evaluate the integrality and optimality performance of the 
proposed LP-relaxation algorithm and the random perturbation 
technique (Section III.C). The network topology used in our 
simulations was the generic Deutsche Telekom network 
(DTnet), shown in Figure 7. 
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Figure 7: Generic DT network topology. 14 nodes and 46 directed links. 
 

To have a reference point, we also executed the same 
experiments using a typical min-max formulation (a 
formulation whose objective is to minimize the maximum 
number of wavelengths used), which was optimally solved 
using the ILP algorithm of [12]. Note that the maximum 
number of wavelengths used is the actual objective that we 
want to minimize. The piecewise linear cost function used in 
the proposed LP RWA algorithm (Section III.B) tries to 



approximate the min-max objective, while also being 
continuous and piecewise linear, so as to exhibit a good 
integrality performance when the Simplex algorithm is used.  
Thus, the ILP-min_max algorithm sets the criterion in terms of 
optimality. We also used the same min-max formulation and 
solved its LP-relaxed version followed by iterative fixing and 
roundings. This LP-min_max algorithm sets a comparison 
criterion in terms of integrality and execution time, since its 
difference to our proposed LP algorithm lies on the piecewise 
linear cost function that we utilize and the random perturbation 
technique. For all algorithms we have used k=3.  

The results were averaged over 100 experiments 
corresponding to different random static traffic instances of a 
given traffic load (for the definition of load ρ please see 
Section IV.D). More specifically, we have performed 
experiments for loads ranging from 0.5 up to 2 with 0.5 step.  

To evaluate the performance we used the following metrics: 
 

(a) The number of used wavelengths averaged over all experiments. 
This is the objective we want to minimize. 

(b) The fraction of instances for which we obtained an integer solution 
by the LP execution (without any fixing and rounding iterations). 

(c) The number of “fixings” and “roundings” required to obtain integer 
solutions that are guaranteed to be optimal, averaged over all 
experiments; this is the average number of fixing and rounding 
iterations performed to move from (b) to (d). 

(d) The fraction of instances that we are sure to have found an optimal 
solution (corresponding to instances for which there was no increase 
in the objective cost of the LP). 

(e) Average number of fixing and rounding iterations for the cases that 
we are not sure to obtain an optimal solution; this is the average 
number of fixing and rounding iterations performed to move from 
(d) to (f). 

(f) The fraction of instances that we have found an integer solution after 
fixing and rounding iterations irrespective of the optimality ((f) is 
always 1 since we always succeeded in obtaining integer solutions). 

(g) Average running time (in sec): the average running time of the 
simulation experiments, including the tableau creation, the LP (or 
ILP) execution and the fixing and rounding iterations until we obtain 
integer solutions (when applicable). 

Table 1 presents the corresponding results. From this table 
we can see that the proposed LP-piecewise algorithm finds 
solutions (column (a)) that are closer to the optimal ones (as 
expressed by column (a) of the ILP-min_max algorithm) than 
those obtained by the LP-min_max algorithm. The random 
perturbation technique seems to improve the performance of 
the algorithm, being able to find in some cases better solutions 
that use a smaller maximum number of wavelengths. This is 
because the random perturbation technique yields more integer 
solutions without fixings (metric (b)) and solutions that are 
guaranteed to be optimal (column (d)) than the LP-piecewise 
algorithm without it. When using the random perturbation 
technique, for all the experiments performed, the optimality 
was lost only for one instance (of load ρ=1). The random 
perturbation technique reduces the number of fixing and 
rounding iterations (column (c) and (e)) that are performed and 
has a slightly better running time (column (g)). The execution 
time of the LP-min_max algorithm is higher than that of the 
proposed LP-piecewise algorithm due to its bad integrality 
performance and the high number of fixing and rounding 
iterations it has to perform to obtain an integer solution.  

Thus, the proposed LP-piecewise algorithm has superior 
overall performance than the other algorithms examined. It 
finds with high probability an optimal solution while 
maintaining low execution times. The random perturbation 

technique makes the proposed LP-piecewise algorithm even 
better, since it increases its integrality performance, and also 
reduces the running time. The good optimality performance of 
the proposed algorithm is maintained for high loads. 

 
TABLE 1: PERFORMANCE OF THE PURE RWA ALGORITHMS 

Load Cost Function a b c d e f g 
ILP-min-max 7.70 1 n/a n/a  n/a n/a 7.18 
LP-min-max 7.76 0 9.76 0.61 16.71 1 16.72 
LP-piecewise 7.72 0.43 1.29 0.87 6.38 1 2.3 0.5 

LP-piecewise + 
random pe rtu rbation 7.70 0.94 1.1 1 0 1 1.27 

ILP-min-max 14.01 1 n/a n/a  n/a n/a 91.93 
LP-min-max 14.03 0 9.78 0.63 16.77 1 22.5 

LP-piecewise 14.02 0.08 2.14 0.88 5.92 1 7.72 1 

LP-piecewise + 
random pe rtu rbation 14.02 0.75 1.18 0.98 3 1 5.17 

ILP-min-max 20.53 1 n/a n/a  n/a n/a 840.2 

LP-min-max 20.56 0 9.74 0.59 15.38 1 29.85 
LP-piecewise 20.54 0.06 2.1 0.87 7.31 1 17.03 1.5 

LP-piecewise + 
random pe rtu rbation 20.53 0.53 1.17 0.98 4 1 14.52 

ILP-min-max 26.66 1 n/a n/a  n/a n/a 3992 

LP-min-max 26.68 0 10.75 0.46 14.14 1 38.44 

LP-piecewise 26.68 0.02 2.46 0.88 3.45 1 30.85 2 

LP-piecewise + 
random pe rtu rbation 26.66 0.48 1.28 0.98 4 1 30.84 

 

V. CONCLUSIONS 
We outlined some general techniques that can be used to 

solve complex and difficult designing problems for optical 
networks. We applied these techniques and proposed an 
algorithm to solve the planning problem of a WDM network 
that corresponds to the offline or static RWA problem. Our 
RWA algorithm is based on LP-relaxation formulation that 
uses piecewise-linear cost function to increase the probability 
of obtaining optimal integer solutions. We also presented a 
random perturbation technique that can be used to enhance the 
performance of the algorithm and iterative fixing and rounding 
methods. Through simulation experiments we verified that the 
proposed LP-relaxation algorithm has superior overall 
performance and is able to find with high probability an 
optimal solution while maintaining low execution times.  
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