
CHAPTER 16

Timed/Advance Reservation
Schemes and Scheduling
Algorithms for QoS Resource
Management in Grids

Emmanuel Varvarigos
University of Patras, Department of Computer Engineering and Informatics, Patras, Greece

Nikolaos Doulamis, Anastasios Doulamis, Theodora Varvarigou
National Technical University of Athens, Department of Electrical and Computer Engineering,
Athens, Greece

CONTENTS

1. Introduction . 2
2. Task Characteristics Important for Resource Management 3
3. Timed and Advance Reservations . 4

3.1. Standard Resource Reservation Schemes 4
3.2. The Timed/Advance Resource Reservation (TARR) Scheme 5
3.3. Timed/Advance Reservations Under Uncertainty 8
3.4. Data Structures Required by the TARR Protocol 10

4. Scheduling Multiple Tasks on Resources . 10
4.1. Previous Work on Scheduling Algorithms 11
4.2. Notation and Problem Formulation . 12
4.3. Earliest Deadline First and Earliest Completion Time Rules 13

5. Fair Scheduling . 14
5.1. Estimation of the Task Fair Rates . 15
5.2. Fair Task Queue Order Estimation . 17
5.3. Fair Processor Assignment . 18

6. Experimental Results . 18
6.1. Objective Evaluation . 18
6.2. Simulation Results . 19

7. Conclusions . 22
References . 23

ISBN: 1-58883-038-1
Copyright © 2006 by American Scientific Publishers
All rights of reproduction in any form reserved.

1

Engineering the GRID
Edited by B. Di Martino, J. Dongarra, A. Hoisie,

L. T. Yang, and H. Zima
Pages (1–23)

2 QoS Resource Management in Grids

1. INTRODUCTION
The Computational Grid is a fundamentally new computational paradigm, which may result,
if successful, in a revolutionary explosion in the level of computational power that can be
applied to a given parallelizable set of tasks [1]. This level of computational power is well
beyond the reach of any single computer system, whether a common PC or a massively
parallel supercomputer. Various ad hoc implementations have already successfully illustrated
the Grid’s potential. However, its true global success requires the development of thoroughly
specialized supporting technologies, especially for the management of the grid resources.
Unfortunately, the Grid’s apparent constitution as a combination of already well-developed
and mature technologies is, in fact, quite misleading [2].

The Computational Grid is both (1) a way to share resources and (2) a way to do things
faster than a single computer can do. The critical resources in the Grid are the compu-
tational power, memory, communication bandwidth, and devices of all kinds that have to
be shared [1]. Clearly, it is these resources that will account for the largest fraction of its
cost. The remaining cost, which is mainly the cost of the application software to be used,
is expected to decrease (to be amortized) as the number of users increase—and there is
no great penalty in distributing this software everywhere in the grid. The true waste occurs
when the computational and the communication resources that are shared are not efficiently
used. Therefore the development of protocols and algorithms for the efficient management
of resources is a key to the success of grid computing [3].

Computers running a task on a Grid have to get the required code and data from a remote
machine; also, when doing computations, machines often have to exchange intermediate
results. In many cases, the time required for communication is more than the time spent
by machines on computations. The success stories of the Grid are currently limited mainly
to coarse grain computation. If Grids are eventually to be used for fine grain computa-
tions, communication delays will become a performance bottleneck. It is therefore important
that the Grid resource manager takes communication delays into account when reserving
resources and scheduling tasks. It also has to consider the interdependence between com-
munication and computation tasks in order to optimise the performance through the use of
pipelining techniques and clever scheduling.

The Grid has to be able to provide an agreed upon Quality of Service (QoS) to its users.
Without it, the users may be reluctant to pay for Grid services or contribute resources to
Grids, which would hinder its development and limit its economic significance. The need for
QoS has been confirmed by the Global Grid Forum (GGF) in the special working group
dealing with the area of scheduling and resource management [4]. New abstractions and
concepts should be introduced at the architecture level to allow users to make service level
agreements (SLAs) with the Grid, and new capabilities are required to enable the enforce-
ment of such SLAs.

The resource manager of a Grid uses information about the job characteristics and
requirements to determine when and on which processor each job will execute. The objec-
tive of the resource manager is to assign resources to tasks in an efficient and fair way, while
meeting to the degree possible the QoS requirements of the tasks. Efficiency in the use of
resources is clearly important because this is what motivated the Grid in the first place. Fair-
ness is important because it is inherent in the notion of sharing, which is the raison d’etre
of the Grid. Meeting the requirements of the users is important because otherwise the users
will not want to use, pay, or contribute resources to the Grid [4].

In order to provide the agreed QoS to the users, the resource manager has to be able
to reserve (parts of) resources for the execution of specific tasks. The requirement of on
demand and efficient use of resources implies that resources should be allocated to a task
only for the time interval during which they are actually used, and should be available to
other tasks for the remaining time. This is not accomplished by existing resource reservation
protocols, which usually reserve resources for considerably more time than the minimum
required. To alleviate this problem, we introduce in Section 3 a new resource reservation
protocol, called the TARR protocol, which uses the concepts of timed and advance reservation
of resources. The protocol uses estimates of the communication delays and the task execution

QoS Resource Management in Grids 3

times in order to reserve (computational and communication) resources only for the exact
time periods during which they will actually be used by a task, and leave these resources
free to be used by other tasks for the remaining of the time.

We also consider the QoS scheduling problem, whose goal is to assign the tasks requesting
service to the available processors so as to satisfy their time constraints. The time constraints
of a task include the task’s deadline (that is, the time by which it is desirable for it to
complete execution) and the task’s earliest starting time on each processor (that is, the
earliest time at which the task can start execution at that processor; it takes into account
the communication delay incurred for transferring the task at that processor and the current
load of that processor). This problem may have zero, one, or many feasible solutions. Often,
finding a single feasible schedule may not be sufficient. In some cases, the goal may be to
find the optimal schedule among all feasible schedules, according to a desired optimality
criterion. In other cases a feasible solution may not exist, in the sense that some tasks cannot
be scheduled to meet their respective deadlines. In this case, we need criteria to select in a
“fair” way the tasks that are rejected and the tasks that receive a degraded QoS.

Meeting the QoS requirements of one user should not be achieved by sacrificing the QoS
of another user. When the desired QoS cannot be provided, the degradation in the QoS
provided should be graceful to all users. This naturally leads to the notion of fairness, which
is an important issue we address in the second part of this paper. Fairness does not mean that
all users have equal access to Grid resources. Instead, our notion of fairness is based on the
max-min fair share concept, and it takes into account the QoS requirements of the users, and
also a weighting parameter that is determined by economic considerations. The weighting
parameter permits us, in case of congestion, to treat more favourably (in a quantifiable way)
users who are willing to pay more for the service they get or who have contributed more
resources to the common Grid infrastructure, or who have to be treated preferentially for
some other reason. We propose two new scheduling algorithms, which we call the Simple Fair
Task Ordering (SFTO) scheme, and the Adjusted Fair Task Ordering (AFTO) scheme, which
differ in the degree of fairness they provide but also in their implementation complexity.
When there is no congestion, each user gets the requested QoS, but when congestion arises
(meaning that the desired QoS cannot be delivered to all users), the QoS that each user
receives (as measured by the computational power he is given, or his completion time, or
the amount of time by which he misses his deadline) is degraded in a way determined by his
requested QoS and the weighting factor.

The remainder of the paper is organized as follows. In Section 2, we describe the task
characteristics that are important for resource management. In Section 3 we present the
TARR protocol for resource reservation, designed to make efficient use of the available
resources. Starting with Section 4 we turn our attention to the scheduling problem, whose
purpose is to decide the processor and the time interval on which each task should be
executed. We first introduce some basic notation and then give the formulation on which
our algorithms will be based. In Section 5, we introduce the notion of fair completion time
and propose two Grid scheduling algorithms that take fairness into account. Experimental
results and comparisons with traditional scheduling schemes, such as the Earliest Deadline
First (EDF) and the First Come First Served (FCFS) schemes are presented in Section 6.
Finally, Section 7 concludes the paper.

2. TASK CHARACTERISTICS IMPORTANT
FOR RESOURCE MANAGEMENT

In order to perform its function the resource manager needs to consider the following task
characteristics:

• The estimated workload of the task. The workload can be categorized based on the type
of system resource we are referring to: For computer resources, the workload can be
defined, as the number of run-time instructions of the task. For network resources, the
workload can be defined as the number of bits that have to be transferred. For storage
resources, the workload can be measured by the number of bits stored and the duration
of time for which they have to be stored.

4 QoS Resource Management in Grids

T1 T2

T3

Figure 1. The interdependence between the tasks can be given in terms of a DAG.

• The variance of workload. Since the workload is not generally known a priori and is
better modeled as a random variable, it is useful for the resource manager to have a
measure of the variability of the workload around its mean.

• The required Quality of Service. The definition of QoS might include requirements
realted to the task deadline (i.e., the required completion time of the task), the proba-
bility to miss the deadline and the reliability. For example, fault tolerance is important,
the task may have to be scheduled on more reliable resources or on more than one
processor for execution.

• The interdependence between the tasks. Any temporal relations between the tasks could
be given in the form of a directed acyclic graph (DAG), describing precedence
constraints for task execution. For example, the DAG shown in Fig. 1, states that Tasks
T1 and T2 must be executed before Task T3. The resource manager must be able to
schedule the tasks in the proper order.

• The price that the user is willing to pay. Depending on the cost that the user is willing
to incur, the scheduler may send the tasks to more or less expensive resources [3].
Also, in case some tasks have to be rejected, the price that a user pays will influence
the choice of tasks that are rejected. The cost of a user is not necessarily an explicit
amount that is charged. Instead it may be implicitly found from the resources the user is
contributing to the Grid infrastructure. In Section 5 we propose scheduling algorithms
that use the max-min fair share concept to take into account (through the introduction
of a weighting parameter) such economic considerations.

It is important to point out that some or all of the task characteristics mentioned above
may not be known to the resource manager in advance. In that case the resource manager
must still be able to work properly and make the best decision with the information that is
available at the time the decision is made.

3. TIMED AND ADVANCE RESERVATIONS
In this section we propose a resource reservation scheme for Grids that uses the notions
of advance and timed reservations. To better appreciate the advantages these two features
offer, we first describe the usual approach where advance/timed reservations are not used.
We refer to such a scheme as a standard resource reservation scheme, and we explain the
reasons such schemes are inefficient.

3.1. Standard Resource Reservation Schemes

In standard resource reservation schemes, when the scheduler assigns a task to a resource, it
records a reservation for that resource in its database. The resource is considered allocated
to the task for an unspecified amount of time, starting at the time the the task-to-resource
assignment is made. As far as the scheduler is concerned, the resource remains booked
for the task until the scheduler is informed about the task completion. This situation is
shown in Fig. 2, where the scheduler waits for a release message to arrive from the resource
before it can allocate the resource to a new task. To allocate the resource to a new task,
the scheduler must send an allocation message to the application telling the user-side where

QoS Resource Management in Grids 5

 Resource Scheduler

x

2tp

Time

Application

Time Time

Release

xt
x

e
p

2

• Fine Splitting

• Coarse Splitting

Request

Request

Allocation

message

Release message

2tp

Allocation

Figure 2. Possible scenario when a standard resource reservation scheme is used.

the data and code required for the execution of the task should be transferred. The data
and code are then transferred to the resource, which takes some additional communication
time. During the transmission of the allocation message and during the transmission of the
data, the resource remains (unnecessarily) inactive. When all the data have arrived at the
resource, the task begins execution. When the task is completed, the resource remains again
(unnecessarily) inactive until the release message arrives at the scheduler, which can then
allocate it to another task.

We denote by 2tp the average time that elapses between the time a resource sends the
release message to the scheduler to inform it about the completion of a task and the time
all the data required to execute the next task arrive at that resource. We also denote by
x the mean execution time of a task on that resource. It is then clear that when a stan-
dard resource reservation scheme is used, the efficiency with which a resource is used is at
most

e = x

2tp + x
(1)

Note that the efficiency factor e may be considerably smaller than 1, and it decreases
as x decreases or as 2tp increases (2tp is at least as large as the roundtrip propagation
delay). In order for the Grid to be useful for a number of different applications, we would
like to be able to use fine grain computation (where x is small) and also be able to use
remote resources (where 2tp is large), both of which correspond to small values for the
efficiency factor e. Thus, standard resource reservation algorithms fundamentally restrict
the efficiency with which Grid resources are used. In the following subsection we show
how we can use timed/advance reservations to make the efficiency factor e close to 1,
independently of the communication delays in the network and the granularity of the
tasks.

3.2. The Timed/Advance Resource Reservation (TARR) Scheme

In the Timed/Advance Resource Reservation scheme (abbreviated, TARR) that we propose,
the scheduler maintains an utilization profile for each resource, which keeps track, as a
function of time, of the future utilization of that resource (see Fig. 3). More specifically,

6 QoS Resource Management in Grids

Resources Scheduler

Task 2

Time

Application

Time Time

Task 1

Timed
Allocation

Request

for task2

Efficiency can be close to 1

Release (Done)

Release (Done)

Release (Done)

Request

Task 0

Figure 3. Resource reservation when advance/reservations are used. The resources are reserved only for the time
during which they are actually used by a task.

the utilization profile of a computational resource records the (future) time intervals for
which the resource has already been reserved for executing tasks. (Note that the resource
may also be the communication bandwidth on a link, in which case the utilization profile
keeps track of the bandwidth that has been reserved on that link as a function of time, or
it may be a memory resource or an instrument that is shared by users). When a resource
is released, the scheduler is informed in order to keep this information up to date. When
a request for a task is sent to the scheduler, the scheduler allocates a resource to the task
for a specific future time interval. In calculating the start time (ST) of that time interval the
scheduler takes into account the estimated communication delays, so as to make sure that
all the data necessary to run the task will have arrived at the resource before time ST. In
calculating the end time (ET) of the interval the scheduler takes into account the ST and
the estimated workload of the task. Therefore, the scheduler uses the resource utilization
profile to allocate a future interval for each task scheduled on a given resource, so that when
one task is completed, the data for the next task, are already available at the resource for
the new task to start execution immediately. This maximizes the efficiency of the resources
and the efficiency factor e can get very close to 1.

An example of a timed/advance reservation made using the resource utilization profile
is shown in Fig. 4. The scheduler is responsible for assigning the tasks, each of which has
a known (estimated) workload, to the appropriate resource using the utilization profiles of
the resources. The information that has to be provided to the scheduler to make a deci-
sion is:

• the required CPU capacity (CPU)
• the required execution time (x) assuming capacity equal to CPU is allocated
• the job completion deadline (D)
• the communication delays �ij for the transfer of all the data involved in the execution

of task Ti from the user to resource j .

These parameters are supplied to the scheduler by the user and possibly by a forecasting
tool. The total estimated workload can be calculated as WL = CPU ∗x. The scheduler takes
into account the communication delay for transferring data from the user application to a
resource, in order to find the earliest possible starting time of a task at that resource.

QoS Resource Management in Grids 7

50
40
30
20
10

CPU 50
60
70
80
90

100

40
30
20
10D

Deadline

Has to be estimated
by forecasting tools

Resource Utilization

WL
WL

0 x
Task for which timed
reservation will be made

Current Time

Earliest Start Time

0 ST ET Dt1 t2 t3 t4 t5 t

End Time Deadline

CPU

Figure 4. Illustrates an example of a timed/advance reservation using the resource utilization profile. The start time
ST of a reservation interval is chosen so as to ensure that all data necessary for the execution of the task have
arrived to that resource by time ST. The end time ET of a reservation interval is chosen so as to ensure that the
task is completed by time ET. If we cannot allocate resources so that ET < D, where D is the deadline the job is
rejected.

The next scheduling step is to reserve (a portion of) the resource for a specific duration
for the execution of task. The reservation is performed by fitting the total workload in the
resource utilization profile. This step may also involve a negotiation process, as shown in
Fig. 5. It is possible that the CPU capacity required for a task may not be available at
the time it is requested, in which case a reservation for a time interval later than the time
requested may be chosen. Also, the scheduler may negotiate/specify new parameters for the
CPU capacity and a corresponding time duration that will result in the same total workload.
When the reservation is completed, the estimated end time of the task is calculated and the
resource utilization profile is updated.

In the resource utilization profiles shown in Figs. 4 and 5 the local resource manager is
assumed to support time sharing, so that it can allocate fractions of the CPU capacity to the

50
60
70
80
90

100

40

40

30

30

20
10

Deadline

WL(a)

WL(b)

WL(b)

0 x
Task for which timed
reservation will be made

Start Time

0

D

t3 t4 t5

End Time
Deadline

Deadline

CPU

DETST

Figure 5. Illustrates a negotiation example. The applications requests 45 units of CPU capacity for duration equal
to t, but gets 30 units of CPU capacity for duration equal to 3t/2 after the negotiation. (a) The workload as it was
supplied by the application; (b) The workload as it was specified after the negotiation process.

8 QoS Resource Management in Grids

tasks. If this is not the case, and the resource has to be allocated a 100% of the time time at
a task, the utilization profiles and the start and end times for the reservation intervals can
be easily modified.

3.3. Timed/Advance Reservations Under Uncertainty

In the examples considered so far it was assumed that the task workload and the commu-
nication delays can be estimated with good accuracy by the forecasting tools and/or by the
user. In practice, however, these estimates may not be accurate; the scheduler should be
able to function correctly in the presence of such uncertainty.

Figure 6 shows the utilization profile at a resource where a reservation for a given task
has to be made. We assume that some rough estimates for the task workload and the com-
munication delays involved are available, but there is a certain degree of uncertainty in these
estimates. The degree of uncertainty can be expressed in terms of variance. Since the com-
munication delays are not accurately known, it is not known when exactly the data required
for the execution of the task will arrive at the resource. Also, since the workload is not
accurately known, it is not known how much time it will take for the task to complete after
it starts execution.

The rule to be followed by the scheduler in order to work correctly in the presence of
such uncertainties is that the scheduler must underestimate the start time of the reservation
(i.e., start the reservation earlier than its estimate) and overestimate the end time of the
reservation (i.e., record the end time later than its estimate) by some small multiple of the
standard deviation of these estimates. For example, if the mean transfer time for data is
estimated to be � seconds, the actual reservation on the resource can be made starting at
time �− 3�� after the present time. In Fig. 6 the estimated start time is shown as ST , while
the time the reservation actually starts is shown as UST (Underestimated Start Time). A
similar rule is used when the workload is not known with accuracy. In that case the end
time of the task has to be overestimated, in order to make sure that the task will have all
the required resources for it to complete execution. The end time OET (Overestimated
End Time) used for the actual reservation is calculated by overestimating the workload
(OWL = WL+ 3�wl).

The rules mentioned above can be used separately or together depending on the accuracy
the forecasting tools can provide. For example, when the the workload estimate is precise
but the communication delays cannot be accurately estimated, we need only underestimate
the start time of the reservation.

50
60
70
80
90

100

40
30
20
10

Deadline
WL

WL

Task for which timed
reservation will be made

Underestimated Start Time
(start of reservation)

Actual End Time
Overestimated End Time
(end of reservation)

Actual Start Time

Current Time

CPU

STUST0 tET OET

0 Dx

Resource Utilization

Figure 6. Illustrates the way timed/advance reservations can be made in the presence of uncertainty. The rule that
should be followed is that, when in doubt, we should overestimate the workload and/or underestimate the start
time in order to be safe. For example, when the variance � 2

wl of the workload is known, we can assume that the
workload is less than WL + 3�wl with high probability. Similarly, a lower bound that could be used for the start
time is ST − 3��, with high probability.

QoS Resource Management in Grids 9

50
40
30
20
10

CPU
50
60
70
80
90

100

40
30
20
10

D

Deadline

Resource Utilization

WL
WL

0 x
Task for which timed
reservation will be made

Current Time

Underestimated Start x of Time Actual Start Time
And Feedback to Scheduler

Start Time is unknown

0 ST ET 2Dt2 t

End Time
Deadline

CPU

Figure 7. Advance reservations when the start time is unknown.

When the forecasting tools are unable to provide any estimates of the communication
delays involved (or they provide no measure of how accurate the estimates are, that is, they
provide no ��), then the reservation should start immediately, as shown in Fig. 7, as if the
delay for the data to be transferred from the application to the resource were zero. In that
case, the resource is reserved much earlier than required, and efficiency decreases. In Fig. 7
the actual start time is shown with ST and the task deadline is shown with D. If the workload
is known, then when the task actually starts execution, a message is sent to the scheduler to
allow the calculation of the end time, which is then recorded in the utilization profile.

When no estimate for the total workload is available, the end time should be considered
infinite. The resource is then released when the task has completed execution and a release
message has arrived to the scheduler (Fig. 8). The efficiency factor e is then the same with
that of standard resource reservation protocols. Clearly, when the workload is not known,
the task deadline cannot be guaranteed, and the user must be informed in advance that such
no guarantee og the QoS can be provided.

50
40
30
20
10

CPU 50
60
70
80
90

100

40
30
20
10

D

Deadline

x + 2tp

x

Resource Utilization

WLWL

0 x
Task for which timed
reservation will be made CPU

Current Time

Data Arrives
Time when data of
next task arrives

0 t

Task finishes

Scheduler learns task finished

da tf sl da

Figure 8. Advance reservation when no estimates for the workload and the communication delays are available.

10 QoS Resource Management in Grids

50
60
70
80
90

100

40
30
20
10

Resource Utilization

WL

CPU

0 t(msec)t1 t2 t5 t6tJ t4

Figure 9. Illustrates the data structure used for recording the utilization profile of a resource. The data structure
is essentially a linked list of pairs �r0� 0�, �r1� t1�, �r2� t2 − t1�, � � � , �rn� tn − tn−1� used to record the discontinuities in
the utilization profile. The horizontal axis records time relative to the present time: every msec the vertical axis
moves to the right by 1 msec. The list update algorithm is simple and requires a small number of operations. The
introduction for a new task between times t5 and t6, as is shown in the figure, can be easily done by inserting two
new elements in the list.

3.4. Data Structures Required by the TARR Protocol

The TARR scheme requires the scheduler to keep track of the utilization profile of each
resource. This can be easily done using a linked list, each element of which is a pair of
numbers, as described in the caption of Fig. 9. When a reservation for a new task is made,
two new elements (pairs) are inserted in the list, corresponding to the times the reservation
for the new task starts and ends, together with the CPU capacity reserved for that task.
The first element �r0� t0 = 0� of the list always refers to present time. As the time passes,
the second pair (r1, t1) is changed by periodically updating the time field t1. For example,
if the periodicity (time granularity) of the updates is 1 msec and t1 = 5 msec, then after
1msec t1 will be changed to 4 msec since ti refers to times relative to ti−1, the time fields
ti, for i > 1 need not be updated. The period of updates of the utilization profile should
be decided based on the expected granularity of the tasks. For example, a msec time scale
should be used when the typical execution time for a task is of the order of few 10s of msec.

4. SCHEDULING MULTIPLE TASKS ON RESOURCES
The TARR protocol described in the preceding section gives an efficient way for reserving
resources in a grid, using the concept of timed/advance reservations. However, we have not
yet discussed the way the resources where the tasks are assigned are chosen. Starting with
this section, we focus on this problem, called the scheduling problem, and propose algorithms
to solve it in a way that is both efficient and fair.

Figure 10 illustrates an example of the scheduling problem where we assume that the
TARR protocol is used for making reservations. In this example, there are four tasks that
have been submitted to the scheduler, and the grid consists of only two resources (CPUs)
with utilization profiles as shown in this figure. The scheduler has to decide the resource
that should be allocated to each task and the corresponding time interval that should be
reserved. Figure 10 assumes, for the sake of an example, that an Earliest Deadline First rule,
discussed in Section 4.3, is used; more intelligent scheduling algorithms will be considered
in the following sections.

We will say that a task is non-preemptable if once it starts execution on a processor,
it has to be completed on that processor without interruption. In the scheduling algo-
rithms we will propose we assume that tasks are non-preemptable [5]. This is the most
limiting case, since any scheduling algorithm that works with non-preemptable tasks also
works when this constraint is removed giving the scheduler more freedom. Task preemp-
tions and interruptions are in any case undesirable, since they imply considerable overhead
for transferring data to other processors, saving process state information, and so on. We

QoS Resource Management in Grids 11

Deadline

Deadline Deadline

Deadline

Resource 1

Resource 2

D4

WL1

Task to be Reserved

WL2

WL3
WL4

WL3

WL1

WL2 WL4

WL4

Task 1 (δ11, δ12) Task 2 (δ21, δ22)

Task 3 (δ31, δ32) Task 4 (δ41, δ42)

0 δ11 δ41

0 δ32

δ31

δ42

0 t D1

Task to be Reserved
0 t D3

Task to be Reserved
0 t D2

Task to be Reserved

δij = delay until data for task i arrives to resource j.

0 t D4

Figure 10. Example of scheduling tasks on resources when the TARR protocol is used for making the reservations.
In this example, the scheduler considers the tasks by first sorting them according to the EDF rule described in
Section 4.2. The algorithm first tries to fit Task 1, which is the the task with the earliest deadline to the Resource 1.
In this example this is feasible, so the reservation is made using the TARR protocol, and the scheduler updates
the utilization profile of the Resource 1. The scheduler then considers Task 2, which it finds can also be assigned
to Resource 1. Task 3, which is considered next, cannot be allocated to Resource 1, so the scheduler attempts to
assign it to Resource 2. Task 3 fits in the utilization profile of Resource 2, even though it will take longer for the
data required to execute the task to reach that resource (the delay �31 is smaller than �32). In this example, we
assume that the Task 4 is sent to both resources, because, for example, it has higher fault tolerance requirements
than the other tasks. In all cases the scheduler makes sure that all tasks are scheduled for completion before their
deadline. If this were not possible, the scheduler would inform the user of the possible violation of the deadline,
and let the user the option of either withdrawing the task, or accepting a new deadline, or resubmitting the task
with new QoS requirements.

also assume that when a task is executed on a machine it occupies 100% of its computa-
tional power, that is, time sharing is not supported. We consider this assumption reasonable
since (a) local, non-grid jobs can be accounted for by excluding from the machine’s com-
putational capacity the fraction used by these jobs, and (b) the ability to execute multiple
grid jobs simultaneously on a machine cannot improve performance (the processor sharing
discipline is the worse performing among work-conserving disciplines), and (c) any schedule
obtained under this assumption is also feasible under the assumption that time-sharing is
available.

4.1. Previous Work on Scheduling Algorithms

Several scheduling algorithms have been reported in the literature so far. The most well-
known scheduling algorithm is the Earliest Deadline First (EDF) [6], which assigns the
highest priority to the task with the most imminent deadline. Another scheduling approach
is the Least Laxity First (LLF) algorithm [7, 8], where the tasks are selected for execution
in order of non-decreasing slack time, defined as the difference between the task’s relative
deadline and its remaining computational time. A simple rule to determine the processor
on which a task is executed is the Earliest Start Time (EST) rule. The earliest start time is
the earliest time that a task can start its execution. Another popular rule is the Minimum
Processing Time First rule (MPTF), where the processor giving the minimum processing
time is selected. New algorithms for resource reclaiming from precedence constrained tasks
in multiprocessor real-time systems have been proposed in [9]. In case of multiprocessor

12 QoS Resource Management in Grids

systems the authors in [10] have proposed an integrated heuristic that takes into account
both the task deadline and earliest start time and performs better than the EDF, LLF
and MPTF algorithms. Several heuristic scheduling algorithms for the multiprocessor case
were also proposed in [11]. The scheduling algorithms mentioned above assume that the
tasks are non-preemptable. Scheduling algorithms dealing with preemptable tasks have also
been reported in the literature [12–14], where it is assumed that each task can be divided
into smaller units, each of which is executed independently. The ability to feasibly schedule
preemptable tasks is always higher than the ability to feasibly schedule corresponding non-
preemptable tasks, but this increase in schedulability is obtained at the expense of a higher
implementation overhead.

Scheduling algorithms for grid computing systems have also been recently proposed. An
economic modeling of the scheduling problem was given in [3] using the concepts of com-
modities and auctions. In this work, a task whose owner is willing to pay more for its
execution has a higher probability of being scheduled compared to the remaining tasks. A
similar micro-economic approach has aslo been proposed in [15]. Three approaches for grid
scheduling that minimize the task earliest completion time are presented in [16]. A new
multisite scheduling algorithm for the GrADS grid infrastructure is giving in [17]. Finally,
performance evaluation of grid systems has been reported in the work of [18].

The previously mentioned scheduling algorithms do not deal with congestion, and do not
say what happens when the tasks cannot all be feasibly scheduled. As a result, fairness
considerations also play no role in these algorithms. Fair scheduling schemes have been
extensively studied in the networking literature, especially for scheduling packet flows over
Internet routers [19, 20]. Some of the ideas we will use for fair QoS scheduling in Section 5
are drawn from concepts introduced in the related networking literature.

4.2. Notation and Problem Formulation

We let N be the number of tasks that have to be scheduled. We define the workload wi

of task Ti, i = 1� 2� � � � �N , as the duration of the task when executed on a processor of
unit computation capacity. The task workloads are assumed to be known a priori to the
scheduler, and are provided by a prediction mechanism, such as script discovery algorithms,
databases containing statistical data on previous runs of similar tasks, etc., [21]. An algorithm
for workload prediction of 3D rendering in a Grid architecture is presented in one of our
earlier works in [22]. We assume the tasks are non-preemptable, so that when they start
execution on a machine they run continuously on that machine until completion. We also
assume that time-sharing is not available and a task served on a processor occupies 100%
of the processor capacity.

We assume that there are M processors in the system, and the computation capacity of
processor j is equal to cj units of capacity. (The computation capacity of a processor is taken
to be the available capacity of the processor, and it does not include capacity occupied by
local tasks) The total computation capacity C of the Grid is defined as

C =
M∑
j=1

cj (2)

That is, if the Grid could be viewed as a single computer it would have computation capacity
equal to C.

Let dij be the communication delay between user i and processor j . More precisely, dij

is (an estimate of) the time between the time a decision is made by the scheduler to assign
task Ti to processor j , and the arrival of all files necessary to run task Ti to processor j .
We assume that the communication delays dij are known to the scheduler, and they are
provided by a prediction mechanism that takes into account the size of the files that have to
be transferred, the available bandwidth and propagation delays in the network, and statistical
data.

Each task Ti is characterized by a deadline Di that defines the time by which it is desirable
for the task to complete execution. In our formulation, Di is not necessarily a hard dead-
line. In case of congestion the scheduler may not assign sufficient resources to the task to

QoS Resource Management in Grids 13

complete execution before the deadline. In that case the user may choose not to execute
the task, as may be the case when he/she expects the results to be outdated or not useful by
the time they are provided. We use Di together with the estimated task workload wi and the
communication delays dij , to obtain estimates of the computation capacity that task would
have to reserve to meet its deadline if assigned to processor j . If the deadline constraints of
all tasks cannot be met, our target is that a schedule that is feasible with respect to all other
constraints is still returned, and the amounts of time by which the tasks miss their respective
deadlines is determined in a fair way.

We let "j be the estimated completion time of the tasks already running on or already
scheduled on processor j . "j is equal to zero (that is, the present time) when no task has
been allocated to processor j at the time a task assignment is about to be made; otherwise,
"j corresponds to the remaining time until completion of the tasks already allocated to
processor j . We define the earliest starting time of task Ti on processor j as

�ij = max�dij � "j� (3)

�ij is the earliest time at which it is feasible for task Ti to start execution on processor j .
We define the average of the earliest starting times of task Ti over all the M available
processors, as

�i =
∑M

j=1 �ijcj∑M
j=1 cj

(4)

We will refer to �i as the grid access delay for task Ti, and it can be viewed as the (weighted)
mean delay required for task Ti to access the total grid capacity

∑M
j=1 cj . Since in a Grid

computation power is distributed, �i plays a role reminiscent of that of the (mean) memory
access time in uni-processor computers.

In the fair scheduling algorithms that we will propose in Section 5, the demanded compu-
tation rate Xi of a task Ti will play an important role, and is defined as

Xi =
wi

Di − �i

(5)

Xi can be viewed as the computation capacity that the Grid should allocate to task Ti for it
to finish just before its requested deadline Di if the allocated computation capacity could be
accessed at the mean access delay �i. As we will see later, the computation rate allocated
to a task may have to be smaller than its demanded rate Xi. This may happen if more jobs
request service than the Grid can support (congestion), in which case some or all of the
jobs may have to miss their deadline. The fair scheduling algorithms of Section 5 attempt to
degrade the QoS experienced by the tasks (as measured by the computation rate allocated to
the task, or the amount of time by which the deadline is missed as a percentage of Di − �i)
in a (weighted) fair way.

The scheduling algorithms that we will propose consist of two phases. In the first phase,
we determine the order in which tasks will be considered for assignment to processors (the
queuing order phase) and in the second phase we determine the processor on which each
task is scheduled (the processor assignment phase).

4.3. Earliest Deadline First and Earliest Completion Time Rules

The most widely used urgency-based scheduling scheme is the Earliest Deadline First (EDF)
method, also known as the deadline driven rule. This method dictates that at any point
the system must assign the highest priority to the task with the most imminent deadline.
The most urgent tasks (i.e., the task with the earliest deadline) are served first, followed
by the remaining tasks according to their urgency.

The EDF rule answers only the queuing order question, but it does not determine the
processor where the selected task is assigned. To answer the processor assignment question,
the Earliest Completion Time (ECT) technique presented next can be used.

14 QoS Resource Management in Grids

d11 d61 d31D1

T1 T3 T6

T2 T4 T5

U
ti

li
za

ti
on

D1

d22
t=0 d52D2

D4 D5 Timed42

Time D6

Figure 11. An example of the Earliest Deadline First/Earliest Completion Time (EDF/ECT) algorithm for the case
"j is defined as the processor release time. In this figure, we assume that all tasks Ti , i = 1� 2� � � � � 6, request service
at time t = 0, the processors have equal computational capacity (c1 = c2), and both processors are initially idle.
We also assume that D1 < D2 < · · · < D6 and �i1 = �i2. The task T1 of the earliest deadline D1 is first assigned for
execution on processor 1 (processor 1 is chosen randomly in this case since there is tie). Task T2 is then assigned
for execution on processor 2 (since it is the processor that yields the earliest completion time). In a similar way,
we assign the remaining tasks.

If task Ti starts execution on processor j at the earliest starting time �ij , its completion
time will be �ij +wij , where wij=wi/cj is the execution time of task Ti on processor j . (Recall
our assumption that each task occupies 100% of a processors capacity when executed; in this
way, tasks are executed in the earliest possible time). Among the M available processors,
the ECT rule selects the one that minimizes the following quantity

ĵ = arg min
j∈$1···M%

�sij +wij� (6)

The earliest starting time �ij depends through Eq. 3 on the time "j at which the last task
already allocated to processor j is expected to complete service.

A note regarding the way "j is defined is necessary here. One way to define "j is to
define it as the processor release time, that is, the time at which all tasks already scheduled
on this processor finish their execution. Figure 11 illustrates a scheduling scenario in which
(a) the task queuing order is selected using the EDF algorithm (b) the processor assignment
is selected using the ECT approach and (c) "j is defined as the processor release time.

Defining "j as the processor release time makes it easy to compute, and independent of
the task that is about to be scheduled, but it has the drawback that gaps in the utilization of
a processor are created (for example, the gap between tasks T1 and T3 in Fig. 11), resulting
in a waste of processor capacity. An obvious way to overcome this problem is to examine the
capacity utilization gaps, and in case a task fits within a capacity gap, to assign the task to
the corresponding time interval. Among all candidates time intervals the one that provides
the earliest completion time is selected. Figure 12 shows how the schedule for the example
given in Fig. 11 is improved by exploiting capacity gaps. The completion times of tasks T5
and T6 are shorter than those obtained in Fig. 11.

5. FAIR SCHEDULING
The scheduling algorithms described in the preceding section do not adequately address
congestion and they do not take fairness considerations into account. For example, tasks
with relative urgency (with the EDF rule) or tasks that have small workload (with the ECT
rule) are favored against the remaining tasks. With the ECT rule, tasks that have long
execution times have a higher probability of missing their deadline even if they have a late
deadline. Also, with the EDF rule, a task with a late deadline is given low priority until its
deadline approaches, giving no incentive to the user to specify an honest deadline (especially
in the absence of any pricing mechanism). To overcome these difficulties, we propose in this
section an alternative approach, where the tasks requesting service are queued for scheduling

QoS Resource Management in Grids 15

δ11 δ31

T1 T3

T2 T5 T4 T6

U
ti

li
za

ti
on

δ22
t=0 δ62 δ52 Timed42

Time

Figure 12. An example of the EDF/ECT algorithm that exploits processor utilization gaps.

according to their fair completion times. The fair completion time of a task is found by
first estimating its fair task rates using a Max-Min fair sharing algorithm as described in the
following subsection.

5.1. Estimation of the Task Fair Rates

In our initial presentation, we assume that all tasks have equal weights, and all users are
equivalent.

5.1.1. Ideal Non-Weighted Max-Min Fair Sharing of Grid Resources
Intuitively, in max-min fair sharing, all users are given an equal share of the total resources,
unless some of them do not need their whole share, in which case their unused share is
divided equally among the remaining bigger users in a recursive way.

The max-min fair sharing algorithm is described more formally as follows. The demanded
computation rates Xi, i = 1� 2� � � � �N , of the tasks are sorted in ascending order, say, X1 <
X2 < · · · < XN . Initially, we assign capacity C/N to the task T1 with the smallest demand
X1, where C is the total grid computation capacity [Eq. 2]. If the fair share C/N is more
than the demanded rate X1 of task T1, the unused excess capacity of C/N − X1 is again
equally shared to the remaining tasks N − 1 so that each of them gets additional capacity
�C/N + �C/N −X1�/�N − 1��. This may be larger than what task needs T2, in which case
the excess capacity is again equally shared among the remaining N −2 tasks, and this process
continues until there is no computation capacity left to distribute or until all tasks have been
assigned capacity equal to their demanded computation rates. When the process terminates
each task has been assigned no more capacity than what it needs, and, if its demand was not
satisfied, no less capacity than what any other task with a greater demand has been assigned.
This scheme is called max-min fair sharing since it maximizes the minimum share of a task
whose demanded computation rate is not fully satisfied.

We can mathematically describe the previous algorithm as follows. We denote by the
non adjusted fair computation rate of the task Ti at the nth iteration of the algorithm. Then
ri�n� is given by

ri�n� =

Xi if Xi <
n∑

k=0

O�k�

n∑
k=0

O�k� if Xi ≥
n∑

k=0

O�k�

� n ≥ 0 (7)

where

O�n� = C −∑N
i=1 ri�n− 1�

card�N�n��
� n ≥ 1 (8)

with

O�0� = C

N
(9)

16 QoS Resource Management in Grids

In Eq. 8, N�n� is the set of tasks whose assigned fair rates are smaller than their demanded
computation rates at the beginning of the nth iteration, that is,

N�n� = $Ti) Xi > ri�n− 1�% and N�0� = N (10)

while the function card�·� returns the cardinality of a set. The process is terminated at the
first iteration n0 at which either O�n0� = 0 or the number card�N�n0�� = 0. The former
case indicates congestion, while the latter indicates that the total grid computation capacity
can satisfy all the demanded task rates, that is,

N∑
i=1

Xi < C (11)

The non-adjusted fair computation rate ri of task Ti are obtained at the end of the process as

ri = ri�n0� (12)

5.1.2. Ideal Weighted Max-Min Fair Sharing of the Grid Resources
We now consider the case where users have different priorities. More specifically, we
assume that each task Ti is assigned an integer weight *i, determined, for example, by the
contribution the user submitting the task (or his organization) makes to the grid infras-
tructure, or by the price he is willing to pay for the services he receives, or by any other
consideration. We assume, without loss of generality, that the smallest task weight is equal
to one. In weighted max-min fair sharing, when the demanded rates of the tasks cannot be
satisfied, the rate that each task receives is proportional to its weight, provided that the task
needs that computation rate.

To be more precise, we allocate computation capacity as if the number of submitted tasks
is equal to the sum of the respective weights, that is, as if there were Ñ = ∑N

i=1 *i virtual
tasks. An equal fair sharing is performed for all Ñ virtual tasks using the algorithm of
Section 5.1.1. Equations 7, 8, 9 are then modified as follows

ri�n� =

Xi if Xi < *i

n∑
k=0

O�k�

*i

n∑
k=0

O�k� if Xi ≥ *i

n∑
k=0

O�k�

� n ≥ 0 (13)

where

O�n� = C −∑N
i=1 ri�n− 1�

card�Ñ �n��
� n ≥ 1 (14)

and

O�0� = C

	N with 	N =
N∑
i=1

*i (15)

Ñ �n� is the sum of the weights of the tasks whose assigned fair rates are smaller than their
demanded computation rates at the beginning of the nth iteration of the algorithm, that is:

Ñ �n� = ∑
i

*i) for all i) Xi > ri�n− 1� and 	N�0� = 	N (16)

The process is terminated at an iteration n0 at which either O�n0� = 0 or card�Ñ �n0�� = 0.

QoS Resource Management in Grids 17

5.2. Fair Task Queue Order Estimation

As already mentioned, a scheduling algorithm should answer two questions. First, it has
to choose the order in which the tasks are considered for assignment to a processor (the
queue ordering problem). Second, for the task that is located each time at the front of the
queue, the scheduler has to decide the processor where the task is assigned (the proces-
sor assignment problem). To solve the queue ordering problem in fair scheduling, we will
describe shortly, ordering disciplines of different degrees of implementation complexity.
Before doing so, however, we have to introduce some additional notation that will be useful
in our presentation.

5.2.1. Non-adjusted Fair Completion Time Estimation
We define the non-adjusted fair completion time ti of task Ti as

ti = �i +
wi

ri
(17)

ti can be thought of as the time at which the task would be completed if it could obtain
constant computation rate equal to its fair computation rate ri starting at time �i (recall
that �i is the mean grid access time for task Ti). Note that finishing all tasks at their fair
completion time is unrealistic because the grid is not really a single computer that can be
accessed by user i at any desired computation rate ri at a uniform delay �i. More precisely,
(a) the task is actually assigned to a specific processor j and the earliest starting time on
that processor is �ij , (b) even if ri < cj , it may not be possible to execute the task at rate ri
on that processor (we do not assume that time sharing is supported), (c) the estimates wi of
the task workloads may be inaccurate. The non-adjusted fair completion times ti, are used
by our algorithm as an index for determining the order in which tasks are processed by the
scheduler

5.2.2. Simple Fair Task Order (SFTO)
According to the Simple Fair Task Order (SFTO) rule, the tasks are ordered in the queue in
increasing order of their non-adjusted fair completion times ti. In other words, the task that
is first considered for assignment to a processor is the one for which it would be fair to finish
sooner. As described earlier, the non-adjusted fair completion times are estimated from the
non-adjusted computational rates ri, which are in turn estimated from the tasks demanded
rates Xi and the total grid processor capacity C. The SFTO rule is simple to implement, but
it is not as fair as some of the other rules described in the following. Its performance and
its fairness characteristics are rather good as shown by the simulation results presented in
Section 6.

5.2.3. Adjusted Fair Task Order (AFTO)
An issue not addressed in the definition of the non-adjusted fair completion times given in
Section 5.2.1 and in the SFTO scheme presented in Section 5.2.2 is that when tasks become
inactive (because they complete execution), more capacity becomes available to be shared
among the active tasks, and the fair rate of the active tasks should increase. Also, when
new tasks become active (because of new arrivals), the fair rates of existing tasks should
decrease. Therefore, the fair computational rate of a task is not really a constant ri, as
assumed so far, but it is a function of time, which increases when tasks complete execution,
and decreases when new tasks arrive. By accounting for this time-dependent nature of the
fair computational rates, the adjusted fair completion times, denoted by tai , can be calculated,
which better approximate the notion of max-min fairness. In the Adjusted Fair Task Order
(AFTO) scheme, the tasks are ordered in the queue in increasing order of their adjusted
fair completion times tai . The AFTO scheme results in schedules that are fairer than those
produced by the SFTO rule; it is however more difficult to implement and more compu-
tationally demanding than the SFTO scheme, since the adjusted fair completion times tai
are more difficult to obtain than the non-adjusted fair completion times ti. The way the

18 QoS Resource Management in Grids

adjusted fair completion times can be computed is described next. Simulation results on the
computation complexity of all schemes will be presented in Section 6.
Adjusted Fair Completion Times Estimation. To compute the adjusted fair completion times

tai , the fair rate of the active tasks at each time instant must be estimated. This can be
done in two ways. In the first approach, each time unused processor capacity is divided, it is
equally divided among all active tasks. In the second approach, the rates of all active tasks
are re-calculated using the max-min fair sharing algorithm, as described in Section 5.1, based
on their respective demanded rates. The first approach is considerably less computationally
intensive than the second one, since the max-min fair sharing algorithm is activated only
once. The second approach, however, yields a schedule that is fairer. Regardless of the
approach used, the estimated fair rate of each task is a function of time, denoted by ri�t�.

Having estimated the fair rates ri�t�, the fair completion time can be obtained using the
following algorithm. We assume that the rates ri�t� of all tasks have been normalized so that
the minimum fair task rate equals 1. We introduce a variable called the round number, which
defines the number of rounds of service that have been completed at a give time [23]. A
non-integer round number represents a partial round of service. The round number depends
on the number and the rates of the active tasks at a given time. In particular, the round
number increases with a rate equal to the sum of the rates of all active tasks, i.e., with a
slope equal to 1/

∑
i ri�t�. Thus, the rate with which the round number increases changes

and has to be recalculated each time a new arrival or task completion takes place.
Based on the round number, we define the finish number Fi�t� of task Ti at time t as

Fi�t� = R�-�+ wi

ri�t�
(18)

where - is the last time a change in the number of active tasks occurred (and therefore the
last time that the round number was recalculated), and R�-� is the round number at time - .
Fi�t� is recalculated each time new arrivals or task completions take place. Note that Fi�t�
is not the time that task Ti will complete its execution. It is only a service tag that we will
use to determine the order in which the tasks are assigned to processors. Using Eq. 18, the
adjusted fair completion times tai can be computed as the time at which the round number
reaches the estimated finish number of the respective task. Thus,

tai) R�tai � = Fi�t
a
i � (19)

As mentioned earlier, the task adjusted fair completion times determine the order in which
the tasks are considered for assignment to processors in the AFTO scheme: the task with
the earliest adjusted fair completion time is assigned first, followed by the second earliest,
and so on.

5.3. Fair Processor Assignment

The SFTO scheme or the AFTO scheme is used to determine the order in which the tasks
are considered for assignment to processors, but it still remains to determine the particu-
lar processor where each task is assigned. A simple and efficient way to do the processor
assignment is to use the earliest completion time rule (ECT), modified so that it exploits the
capacity gaps (Section 4). According to this rule, each task is assigned to the processor that
yields the earliest completion time. Simulation results on the performance of the SFTO and
AFTO schemes when combined with the ECT rule are described in Section 6.

6. EXPERIMENTAL RESULTS
In this section we describe criteria for measuring the performance of the proposed Grid
scheduling algorithms, and present simulation results and comparisons with traditional
scheduling policies.

6.1. Objective Evaluation

One criterion that we will use for measuring the performance of a scheduling algorithm
is the relative error between the demanded task rates and the actual schedulable rates

QoS Resource Management in Grids 19

defined as

E1 =
∑
i

Xi −Xc
i

Xi

(20)

where Xi is the demanded rate and Xc
i is the actual rate allocated to the ith task. Low

values of error E1 indicate that most of the tasks are served at rates close to their respective
demanded rates.

In the FCFS and EDF algorithms, the tasks are either executed at their demanded rates
Xi, or they are rejected. Therefore, for the FCFS and EDF schemes, the actual task rates
are equal to Xc

i = $Xi� 0% (depending on whether the task is assigned for execution or not).
In contrast, in the fair scheduling schemes we proposed, all tasks are executed, possibly at
a rate smaller than their demanded rate. Execution of a task with a rate smaller than its
demanded rate means that the task deadline is violated.

Another criterion we will use for comparing the performance of the scheduling schemes
is the ratio

E2 =
∑

i X
c
i

C
(21)

E2 expresses the efficiency of the scheduling algorithm in allocating the available proces-
sor capacity; the greater the value of E2, the better is the scheduling efficiency. When∑

i Xi > C, an ideal scheduler would use the total offered processor capacity and E2 would
equal 1. When

∑
i Xi < C, an ideal scheduler would serve all tasks with rates equal to

the demanded ones. In practice, however, due to task and processor constraints (tasks
are non-preemptable, time sharing is not allowed, and so on), the ideal case cannot be
achieved.

A third criterion we will use for evaluating scheduling efficiency is the average relative
deviation of the demanded task deadlines to the actual task completion times,

E3 =
1
N

∑
i

Di −max�Dc
i �Di�

Di

(22)

where Di is the requested deadline and Dc
i is the actual completion time of the ith task. Tasks

whose actual completion times are smaller than their respective deadlines do not contribute
to E3.

As already mentioned, the FCFS and EDF algorithms do not permit any violations of
the task deadlines and they may reject tasks, in which case the error E3 becomes equal to
infinity. To overcome this difficulty, we evaluate the performance of these schemes assuming
that tasks whose deadline is violated are put in a waiting list, and reapply for execution after
the completion of the last feasibly assigned task.

6.2. Simulation Results

The architecture for which the simulation results were obtained consists of 5 processors of
different capacities. Several tasks of varying workload, ready times and deadlines are submit-
ted. More specifically, it is assumed that the task workload follows a Gaussian distribution
with a varying mean and variance. We define the normalized load of the system as

/ =
∑

i Xi

C
(23)

Considering different values for the variance of the Gaussian distribution, permits the eval-
uation of scheduling efficiency for the case of symmetric and the asymmetric workloads.
Small values of the variance indicate that a number of tasks of similar workload are sub-
mitted to the system, while large values indicate very different workloads for the submitted
tasks.

Figure 13(a) presents the simulation results obtained for the SFTO and AFTO schemes
using criterion E1, which is plotted against the normalized load /. For comparison purposes,
we also depict the results obtained for the FCFS and EDF schemes. The simulations were

20 QoS Resource Management in Grids

0.5

0.45

0.4

A
ve

ra
ge

 E
rr

or
 E

1

0.3

0.35

0.25

5 10
Number of Tasks

(a)

15

FCFS
EDF
SFTO
AFTO

20

0.35

0.3

0.25

A
ve

ra
ge

 E
rr

or
 E

3

0.15

0.2

0.1

5 10
Number of Tasks

(c)

15

FCFS
EDF
SFTO
AFTO

20

80

75

70

A
ve

ra
ge

 E
rr

or
 E

2

55

65

60

50

5 10
Number of Tasks

(b)

15

FCFS
EDF
SFTO
AFTO

20

Figure 13. The errors E1, E2 and E3 versus the normalized load / for the FCFS, EDF, SFTO, and AFTO policies.

0.45

0.4

A
ve

ra
ge

 E
rr

or
 E

1

0.3

0.35

0.25

0.2
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Workload Variance

(a)
Workload Variance

FCFS
EDF
SFTO
AFTO

0.35

0.3

0.25

A
ve

ra
ge

 E
rr

or
 E

3

0.15

0.2

0.1

5 10
Number of Tasks

(c)

15

FCFS
EDF
SFTO
AFTO

20

100

95

A
ve

ra
ge

 E
rr

or
 E

2

75

90

85

80

(b)

FCFS
EDF
SFTO
AFTO

Figure 14. The errors E1, E2 and E3 versus the variance of the workload for the FCFS, EDF, SFTO, and AFTO
policies.

QoS Resource Management in Grids 21

0.45

0.4
A

ve
ra

ge
 E

rr
or

 E
1

0.3

0.35

0.25

0.5

2015105 5 10 15 20
Number of Tasks Number of Tasks

(a)

FCFS
EDF
SFTO
AFTO

0.35

0.3

0.25

A
ve

ra
ge

 E
rr

or
 E

3

0.15

0.2

0.1

5 10
Number of Tasks

(c)

15

FCFS
EDF
SFTO
AFTO

20

80

75

A
ve

ra
ge

 E
rr

or
 E

2 70

60

65

50

55

(b)

FCFS
EDF
SFTO
AFTO

Figure 15. CriteriaE1,E2 andE3 versus the number of submitted tasks for the FCFS, EDF, SFTO, andAFTOpolicies.

performed assuming that the 5 processors have the same computational capacity (symmetric
processor case). We observe that the AFTO scheme yields the highest efficiency with respect
to criterion E1. The worst performance is obtained for the FCFS scheme. Figure 13(b) shows
the results for the SFTO, AFTO, FCFS and EDF schemes using criterion E2, assuming sim-
ilar capacities for all processors. Again, the AFTO scheduling policy yields the best results.
Criterion E3, which expresses the deviation between the demanded deadlines and the actual
completion times, is depicted in Fig. 13(c).

0.15

0.1

0.05

0

A
ve

ra
ge

 E
rr

or
 E

3

0.3

0.35

0.25

0.2

0.15

0.1

0.05

0

0.3

0.4

0.35

0.25

0.2

2.521.510.5

(a)

2.521.510.5

(b)

FCFS
EDF
SFTO
AFTO

A
ve

ra
ge

 E
rr

or
 E

3

FCFS
EDF
SFTO
AFTO

Normalized Load ρ Normalized Load ρ

Figure 16. The error E3 versus the normalized load / for the FCFS, EDF, SFTO, and AFTO scheduling policies.
(a) Case of medium variation in the processor capacities and (b) Case of very high variation in the processor
capacities.

22 QoS Resource Management in Grids

Table 1. Normalized computational complexity for the EDF, SFTO, and AFTO
scheduling policies. Normalization has been performed with respect to the complexity
of the EDF scheme in case that the number of tasks is 10.

Normalized Computational Complexity
Number of Tasks 10 15 20 25 30

EDF 1.00 2.00 2.93 3.94 4.87
SFTO 1.01 2.08 3.06 4.15 5.22
AFTO 1.14 2.88 3.94 5.88 15.75

The effect of the workload variance on performance is illustrated in Fig. 14. Particularly,
Fig. 14(a–c) plot criteria E1, E2 and E3 for the FCFS, EDF, SFTO, and AFTO policies as
a function of the workload variance. The load is held constant to / = 1�25, the number of
tasks is 25, and all processors have equal computation capacities. Note that as the workload
variance increases, the performance of all the schemes improves.

Figure 15 presents the effect of the number of tasks to the scheduling performance using
criteria E1, E2 and E3 for load / = 1. It is observed that as the number of tasks increases
the scheduling efficiency also increases but with a decreasing rate. This indicates that for a
large number of small tasks the scheduling algorithms better exploit the available processor
capacity of the Grid infrastructure.

The previous results were obtained assuming small variation in the processor capacities.
Figure 16, presents the effect of the variation of the processor capacity (asymmetric processor
case) with respect to performance criterion E3. It is observed that the AFTO and SFTO
scheduling policies are relatively insensitive to the variation of the processor capacity. For
high variation in the processor capacities, the proposed AFTO policy presents the best
results, with the SFTO scheme coming second.

The computational complexity of the EDF, SFTO, and AFTO scheduling schemes is
presented in Table 1 for different values for the number of tasks requesting service.
The complexity has been normalized with respect to the cost of the EDF scheme when
the number of submitted tasks is equal to 10. As expected, the complexity for all schemes
increases with the number of tasks. The AFTO policy is the most computationally demand-
ing, especially for large number of tasks., because it requires the estimation of the respective
adjusted fair rates.

7. CONCLUSIONS
Scheduling efficiency and resource reservations mechanisms are keys to the success of com-
putational Grids, and especially to Grid capability to deliver commercial applications a
guaranteed and personalized Quality of Service (QoS). In this paper, we introduce a new
resource manager scheme which assigns computational resources to the assigned tasks in
an efficient fair way while meeting to the degree possible the quality of service parameters
of the individual tasks. For this reason, a new protocol called TARR (Time and Advanced
Reservation of Resources) is introduced to estimate the communications delays and the task
execution times in order to reserve computational and communication resources only for the
time period during which they are actually used by a task and leave those resources available
by other tasks for the remaining of the time.

Then, we consider the QoS scheduling problem, in a way that all tasks requesting for
service are assigned to the available resources so that the time constraints are satisfied fairly.
In this paper, we proposed two new scheduling algorithms for the Grid environment that
could be used to implement a fair QoS resource management policy. In the Simple Fair
Task Order (SFTO), the tasks are ordered in the queue in an increasing order with respect
to their non-adjusted fair completion times. The non-adjusted fair completion times are
obtained by the non-adjusted fair computational rates of the tasks by applying a min-max
fair sharing algorithm. An improved version of the SFTO scheme is the Adjusted Fair Task
order (AFTO) scheduling policy, where the fair rates are dynamically adjusted each time
tasks become inactive (e.g., they complete execution) or active (e.g., new arrivals) to better

QoS Resource Management in Grids 23

exploit the offered Grid processor capacity. In the AFTO scheme, the fair rates of the tasks
are not constant, as is assumed in the SFTO scheme, but they increase when tasks complete
execution and decrease when new tasks arrive. In both scheduling methods the processor at
which the tasks are assigned for execution is found based on the Earliest Completion Time
(ECT) policy modified so that processor capacity gaps are taken into account.

Experimental results and comparisons with the traditional First Come Fist Serve (FCFS)
and Earliest Deadline First (EDF) scheduling schemes, indicate that our proposed schedul-
ing schemes are fairer and better exploit the available Grid resources. In particular, when
the variation in the processors capacities is small, the AFTO scheme outperforms the other
schemes with respect to all the examined criteria. The performance of the AFTO scheme
remains higher even in case of high variations of the processor capacities. However, the
AFTO scheme requires higher computational load than the other scheduling policies.

ACKNOWLEDGMENT
This work was supported by the EU funded project GRILAB.

REFERENCES
1. I. Foster, C. Kesselman and S. Tuecke, “The anatomy of the Grid: Enabling Scalable Virtual Organizations,”

International Journal Supercomputer Apllications, 27 (2001).
2. W. Leinberger and V. Kumar, “Information Power Grid: The New Frontier in Parallel Computing,” IEEE

Concur., 7, 75–84 (1999).
3. R. Wolski, J. S. Plank, T. Bryan, and J. Brevik, “G-commerce: Market Formulations Controlling Resource

Allocation on the Computational Grid,” Parallel and Distributed Processing Symposium, 8–11 (2001).
4. Scheduling Working Group Forum, Doc. 10.5 (1999).
5. J.Y-T. Leung and M.L. Merrill, “A Note on Preemptive, Scheduling of Periodic, Real-Time Tasks,” Information

Processing Letters, 115–118 (1980).
6. M. S. Fineberg and O. Serlin, “Multiprogramming for Hybrid Computation,” In Proceedings of IFIPS Fall Joint

Computer Conference. Washington DC 1967.
7. J. A. Stankovic et al., “Implications of Classical Scheduling Results for Real Time Systems,” Computer, 16–25

(1995).
8. M. L. Dertouzos and A. K.-L. Mok, “Multiprocessor On-line Scheduling for Hard Real Time Tasks,” IEEE

Trans. on Software Eng. 1497–1506 (1989).
9. G. Manimaran, C. Siva Ram Murthy, Machiraju Vijay, and K. Ramamritham, “New Algorithms for Resource

Reclaiming from Precedence Constrained Tasks in Multiprocessor Real-time Systems,” Journal of Parallel and
Distributed Computing, 44, 123–132 (1997).

10. K. Ramamritham, J. A. Stankovic, and P.-F. Shiah, “Efficient Scheduling Algorithms for Real-time Multipro-
cessor Systems,” IEEE Trans. on Parallel and Distributed Systems, 1, 184–194 (1990).

11. W. Zhao, K. Ramamritham, and J. A. Stankovic, “Scheduling Tasks with Resource Requirements in Hard Real
Time Systems,” IEEE Trans. on Software Engineering, 12, 360–369 (1990).

12. X. Deng, N. Gu, T. Brecht, and K.-C. Lu, “Preemptive Scheduling of Parallel Jobs on Multiprocessors,” SIAM
Journal on Computing, 30, 145–160 (2000).

13. G. Manimaran and C. Siva Ram Murthy, “An Efficient Dynamic Scheduling Algorithm for Multiprocessor
Real-time Systems,” IEEE Trans. Parallel and Distributed Systems, 9, 312–319 (1998).

14. L. E. Jackson and G. N. Rouskas, “Deterministic Preemptive Scheduling of Real Time Tasks,” IEEE Computer,
35, 72–79 (2002).

15. K. Subramoniam, M. Maheswaran, and M. Toulouse, “Towards a Micro-Economic Model for Resource Allo-
cation in Grid Computing Systems,” IEEE Electrical and Computer Engineering, 2, 782–785 (2002).

16. D.P. Spooner, S. A. Jarvis, J. Cao, S. Saini, and G. R. Nudd, “Local Grid Scheduling Techniques Using Perfor-
mance Prediction,” In IEE Proceedings Computers and Digital Techniques, 150, 87–96 (2003).

17. K. Cooper, A. Dasgupta, K. Kennedy, et. al., “New Grid Scheduling and Rescheduling Methods in the GrADS
Project,” IEEE Parallel and Distributed Processing Symposium. 2004, pp. 199–206.

18. Li Keqin, “Experimental Performance Evaluation of Job Scheduling and Processor Allocation Algorithms
for Grid Computing on Metacomputers,” IEEE Parallel and Distributed Processing Symposium, (2004),
pp. 170–177.

19. A.K Parekh and R.G Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated
Services Networks: The Single-node Case,” IEEE/ACM Tran. on Networking, 1, 344–357 (1993).

20. A. Demers, S. Keshav and S. Shenker, “Design and Analysis of a Fair Queuing Algorithm,” In Proceedings of
the ACM SIGCOMM, (1989), Austin, September.

21. D. Bertsekas and R. Gallager, “Data Networks,” 2nd Edn., Prentice Hall, 1992 (section starting on p.524).
22. N. Doulamis, A. Doulamis, A. Panagakis, K. Dolkas, T. Varvarigou and E. Varvarigos, “A Combined Fuzzy-

Neural Network Model for Non-linear Prediction of 3D Rendering Workload in Grid Computing,” IEEE Trans.
on Systems Man and Cybernetics, Part-B, 34, 1235–1247 (2004).

23. S. Keshav, “An Engineering Approach to Computer Networking,” Addison-Wesley, 1997.

