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Abstract A determinant factor for the introduc-
tion of grid technologies in production domains
of scale can be the design of easy, fast and,
from an operational point of view, realizable de-
ployment procedures. Remote system manage-
ment technologies, typically used to monitor and
manage IT environments, are designed to offer
remote software installation functionality that ex-
hibits the aforementioned characteristics; how-
ever, previous work has shown that even valuable
systems can fail to perform in heterogeneous, ge-
ographically distributed environments, especially
if they are maintained by organizations affiliated
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to the public sector. The deployment of grid
technologies throughout the Greek School Net-
work can be achieved by combining OpenRSM,
a novel open source solution capable to sup-
port usable, configurable, infrastructure manage-
ment use cases in heterogeneous environments
and LiveWN, a grid scavenging solution that in-
tegrates live technologies with gLite grids.
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1 Introduction

Grid computing relies on middleware technolo-
gies that implement logic on top of informational
systems in order to build services that can ex-
ploit large-scale distributed computing and stor-
age infrastructures. Grids have been the focus of
intensive research in order to establish global re-
source management architectures capable to host
novel, user-level applications. Research projects
in the field of grid technologies, such as the
Enabling Grids for E-sciencE (EGEE) [1] have
produced middleware and infrastructures across
Europe, and the European Grid Initiative (EGI)
[2] has been founded to guarantee the sustain-
ability, coordination and federation in the Euro-
pean Grid Infrastructure, among the individual
National Grid Infrastructures (NGIs). The EGI
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infrastructure currently numbers 331 resource
centers world-wide, providing more than 85000
CPUs and several petabytes of storage [3]. The
EGI infrastructure is based on the gLite middle-
ware [4] that relies on a stack of lower level grid
infrastructure technologies to manage distributed
computational resources across organizations [5].
The Greek NGI is called HellasGrid and consists
of 6 computer clusters with a total of more than
850 64-bit CPUs, and on-line storage in the form
of disks and tapes of more than 100 TBs, intercon-
nected over an end-to-end gigabit backbone. The
HellasGrid is integrated with the EGI infrastruc-
ture via the National Research and Education
Network (NREN) and is available to the academic
community.

Extending the computational resources of the
HellasGrid infrastructure by adding worker nodes
running on commodity stations has been a prob-
lem, since it requires a combination of technical
solutions that can implement realizable escala-
tion procedures, besides available spare resources.
The Greek School Network (GSN) [6], the or-
ganization that interlinks all school laboratories
in Greece and provides telematic services to the
national educational community, can be an ideal
case for the deployment of grid technologies to
large environments. The network infrastructure of
GSN is designed and maintained by a consortium
of research centers and universities serving more
than 60000 teacher accounts out of a total number
of 160000 teachers. GSN currently interconnects
14487 schools, which includes 5555 kindergartens,
5972 elementarily, 1685 junior high schools, 1007
highs and 268 technical education high schools.
The former numbers represent 89.6% of the
schools in Greece. There are 8380 school labs
across GSN, 5211, 1801, 936, 432, respectively for
each type of school mentioned above, giving a
total of 62809 work stations. 19587 of the latter
are located in elementary schools, 19880 in junior
highs, 15850 highs and 7492 in technical educa-
tion highs. The computational resources provided
by GSN are both available and continuously up-
dated; the main volume of workstations are lo-
cated in school laboratories that are mainly used
during day time, normally less than seven hours
per day, five days per week [7]. The establishment
of non-binding grid technologies such as Desktop

Grids in the school laboratories can increase the
size of the HellasGrid NGI by a significant factor
[8] and produce a valuable testbed for research in
the field of distributed technologies. An installa-
tion throughout GSN would need to cause min-
imum interference to client systems, so that the
educational procedure is not disturbed and also
keep costs low, through the use of open source
systems.

Previous work commented on the possibility of
using LiveWN [9] scavenging in the Greek School
laboratories. The proposed solution addressed the
issue from a technical, structural and administra-
tive point of view. Considering such a prospect,
it is obvious that efficient management solutions
need to be employed. The current paper proposes
the integration of LiveWN with OpenRSM [10],
an open source tool for systems and network man-
agement, in order for the former to be transferred,
installed, and massively run on demand through-
out GSN labs. OpenRSM is light-weight, usable
and scalable and can remotely manage systems
and network. It builds on the experience of GSN
in integrated remote management services. To the
best of our knowledge, there is no reliable auto-
mated method to remotely and massively install a
tool such as LiveWN and ensure that it is timely
and appropriately used, unless a physical medium
is employed. But the on-site manual installation
at every PC cannot be an option. Instead, the
OpenRSM agent can be distributed via the web;
it is small in size, as opposed to LiveWN which
is a full featured Linux image, it is easy to install
with a single click and most importantly, it con-
veys management functionality to the OpenRSM
server. The rest of the current paper presents
the procedures and solutions designed for a vi-
able scaled installation of LiveWN in the Greek
School Network labs. The paper is organized as
follows: Section 2 discusses related work in CPU
scavenging and remote management technologies,
Section 3 describes the installation of LiveWN in
GSN and Section 4 presents our conclusions.

2 Related Work

There is an abundance of CPU scavenging and
desktop grid technologies. SETI@home [11] is
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among the most well-known ones, involving ap-
proximately four million computers throughout
the internet in scientific experiments that pursue
the search for extraterrestrial intelligence (SETI).
Condor [12] and BOINC [13] are also known,
tested and viable solutions for desktop resource
scavenging. Condor has developed mechanisms
and policies that can support high throughput
computing through effective workload manage-
ment, that is, job queuing, scheduling and policing,
priorities, resource monitoring and management.
BOINC originated as part of SETI@home and is a
well-known grid system that supports running sci-
entific experiments at remote computers. BOINC
also provides a usable framework for building vol-
unteering computer projects. The SZTAKI Desk-
top Grid [14] is a BOINC-clone project initiated
in Hungary, run by the Computer and Automa-
tion Research Institute (SZTAKI) of the Hungar-
ian Academy of Sciences. SZTAKI boosted the
use of grids in Hungary and currently supports
on more than 80000 nodes. ClusterGrid [15] is
another project created by researchers in Hun-
gary, aiming in integrating x86 computer stations
into a countrywide set of interconnected clusters.
The testbed infrastructure is provided by partici-
pating high schools, universities, public libraries,
and infrastructure and coordination is provided
by NIIF/HUNGARNET. XtremWeb [16] is a re-
search project aiming to serve as a substrate for
global computing experiments. It supports the
centralized set-up of servers and workstations as
worker nodes. In addition, it can also be used
to build peer-to-peer systems where any worker
node can become a client capable to submit jobs.
OurGrid [17] is another valuable project for desk-
top grids. EDGES [18] is a grid project that aims
to implement integrated grid infrastructures based
on a variety of desktop grids that interface with
former EGEE grid services. EDGES is nowadays
replaced by EDGI. DEGISCO is also one of the
followers of the EDGEeS project. There are also
a number of commercial desktop grid solutions
for enterprises; the most well-known ones are
Entropia Inc [19] and Univa United Devices [20].
Commercial platforms typically support enter-
prise desktops, clusters and database servers and
offer elaborate characteristics. For instance, En-
tropia can seclude the execution of desktop grid

applications from other processes running thus
isolating grid applications data access on client
machines. There have also been efforts for grid
technologies to inter-operate and also to integrate
with other types of systems. In [21] the authors
elaborate on bridging desktop grids with service
grids for service resources utilization, and they
present and compare three approaches for solving
interoperability problems between desktop and
service grids. In [22] an interesting interface be-
tween the Globus Toolkit and BOINC is pre-
sented. An interesting integration would be that
of grids with infrastructure management systems;
grid technologies could complement management
services or resource management engines and
infrastructure management systems could imple-
ment methods that enable the deployment and
operation of grids in their infrastructure.

Commercial remote management systems cover
the needs of the enterprise; high end systems such
as Tivoli [23] by IBM, Unicenter [24] by CA,
BMC management tools [25] and HP manage-
ment platforms fall among the most well-known
Enterprise Management Systems (EMSs). EMSs
are integrated platforms that promise to moni-
tor and control network and systems infrastruc-
ture by offering high level use cases in the areas
of assets, network, software and remote desktop
management. Their ultimate goal is to manage
the total cost of ownership (TOC) of an organi-
zation via elaborate event registration, high level
analysis, work flows organization and accounting
techniques. EMSs are commercial systems and
therefore come costs that often exceed licens-
ing since both their elaboration and complex-
ity can require dedicated infrastructure, opti-
mization, specialized operators or consulting [26].
Open source solutions in the field of infrastruc-
ture management traditionally cover specialized
cases of remote management such as network
management and monitoring, inventory and assets
management, configuration management, soft-
ware distribution, remote desktop connection,
workstation tools and utilities. Open systems can
be easy to use, flexible and usable in dynamic en-
vironments; there are several valuable and known
open source systems but none can be considered
to reach the versatility of commercial EMS. Even
so, the field of open source remote management
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systems is progressing and during the last years a
significant number of projects have extended their
functionality to include more than one EMS sub-
systems. High level systems in fields such as en-
terprise architecture management [26] have been
released, such as ITERAPLAN [27] that offers
mapping, monitoring, analysis and presentation
of the software and systems that are deployed
across the architecture of an enterprise, aiming to
optimize their use and minimize costs.

2.1 LiveWN

LiveWN is an open desktop grid platform com-
patible with LCG/EGEE grids, which exploits
live media technologies in order to provide pre-
configured, production-ready, grid-enabled sys-
tems. The LiveWN scavenging solution is a
mixture of three technologies, Linux LiveCD,
LCG/EGEE and LiveWN Server. The LiveCD
technology provides ease of use and hardware
independence. Users do not have to install or
configure their system, while at the same time
they are disposed with a fully relocatable envi-
ronment. The LiveWN server incorporates the
services needed by a site in order to properly de-
ploy LiveWN easily that is, OpenVPN, OpenAFS,
Rsync and PlatnetLab nodes support. OpenVPN
provides tunneling techniques for a generic VPN
solution under unpredictable network environ-
ments, for instance, behind firewalls. It has been
employed in order to meet the public IPv4 ad-
dressing requirements imposed by the middle-
ware, via the provision of single IP address per
worker node identity. AFS is a highly available
and scalable solution for file-space that allows
the users to store and retrieve files, even when
they work in a totally disk-less environment;
this proves handy under stateless environments,
such as CD/DVD-ROMs, NetBoot, etc. An Ope-
nAFS service has been included in LiveWN for
this reason. The Rsync server instance provides
the development team with the ability to apply
patches and updates during reconfiguration, min-
imizing the need for frequent software distrib-
utions on physical media or other network, or
labor, intensive methods. The PlanetLab node
service is optional but improves the availability
of the LiveWN configuration management sys-

tem when placed at strategic locations through
the properties of the Coral Content Distribution
Network [28]. Ideally, PlanetLab nodes should
be placed near backbone network routers, for
optimal reliability. There is no need for special
configuration of such PlanetLab nodes, their mere
existence will allow to survive wide network par-
titioning. Upon boot, LiveWN is pre-configured
to retrieve an IP address from a DHCP server. It
then configures initial network access and, once
network connectivity is established, users may
start the LiveWN service. Users are authenticated
using a login/password in order to be assigned
with a unique worker node identity, which is
configured as part of a grid Computing Element
(CE); it is entirely possible to auto-subscribe so-
called anonymous resources, as the latter has been
considered adequate in the case of GSN. Once
correct credentials have been supplied, an Open-
VPN tunnel is created and the system configures
its host name and domain name and turns to
the designated resource pool that is managed by
the associated Computing Element in the grid
infrastructure hierarchy. Pieces of configuration
such as forward and reverse DNS, SSH keys and
other useful values are retrieved from the environ-
ment of the system or can be specified by the user.
After the system is initialized, it appears as just
another Worker Node within a cluster of the grid
infrastructure, and joins the Computing Element’s
queues in order to start accepting and executing
jobs. LiveWN is adaptable with respect to network
environments, since it uses VPN techniques. It can
work behind firewalls or within private address
space networks. This characteristic of LiveWN
solves the problem of public IP addresses reser-
vation and conforms with the GSN policies and
design.

2.2 OpenRSM

OpenRSM is an innovative initiative in the area of
open, integrated, lightweight remote management
systems that builds on the experiences gained
from the deployment and operation of commer-
cial platforms for the GSN remote management
service. It is one of the very few open remote
management systems in the field that performs in
scale and also implements enabling features such
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as flexible installation modes, customization fea-
tures, platform independence, security and simple
management use cases. OpenRSM is lightweight
so that it can be used by end users who are not
specialized in the use of management or asset-
reporting tools. It is also designed for fast and
automatic deployment in order to cover the needs
of administrators who manage very dynamic envi-
ronments. The server, the agent, and the manage-
ment console support automatic installations that
are created using known open installer packagers.
The size of the agent is about 1.5 MB, and thus it
can be distributed even in remote areas connected
via slow lines. After the installation, which ex-
poses a graphical user interface, no configuration
is necessary and the administrators can start using
the tool. The development of the system adopts
the open source model so as to exploit the dy-
namics of open technologies and gain value from
integration, based on the assumption that even
if there is no complete, integrated open source
EMS, the related open technologies have matured
to the point that the open source community can
provide all the necessary components for one.
Several open source projects were examined in
order to find the most appropriate open source
management tools available for the purposes of
OpenRSM. Some of them are: OpenAudit for
assets management and inventory, NINO and
OpenNMS for network monitoring, WindowsGet
and CURL for software management, TightVNC
for remote desktop control, and a significant num-
ber of utilities and tools for smaller pieces of func-
tionality ranging from zip tools and utilities, to
network discovery and testing, report formatting
or tree visual components. OpenRSM has been
tested in four pilot installations, including a pilot
installation in the Greek School network and has
successfully passed extensive scale testing [10].

The major components of the system are the
server, the agents and the management console.
OpenRSM adopts the client-server approach; the
agents of the system are installed in managed
stations; agents model abstract manageable enti-
ties that convey administrative actions from the
server. Administrative actions originate from the
OpenRSM management console, the graphical
user interface for users and administrators. Man-
agement commands that correspond to tasks are

visually created at the console and are submitted
to the OpenRSM server; from there they are sent
to the agents. The server schedules and synchro-
nizes the execution of jobs that represent admin-
istrative tasks. Jobs are designed with the use of
the object-oriented model and play a central role
in terms of usability, design efficiency and system
scalability. They behave as standard abstract sys-
tem tasks, for example, inventory, remote control,
remote command, or as reusable user-created ob-
jects. Jobs can themselves be managed by admin-
istrators since their creation and execution stages
are decoupled. The front–end of the OpenRSM
logic is the server; its purpose is to schedule
job execution according to user commands, pre-
pare (wake) the agents for job execution, con-
centrate access to back–end services, and interact
with OpenRSM proxy and database modules. The
back–end of the OpenRSM server consists of web
and database servers. The server wakes the agent
using a custom handshaking protocol. If there are
other complementary tasks that must be executed
as a result of job execution, due to job depen-
dencies, it makes sure they are also dispatched.
The server is also responsible for monitoring the
job execution progress. It sends event and logging
information back to the management console so
that all management scenarios can be handled by
the management console. When jobs reach the
execution stage they are served by one of the
subsystems incorporated in the OpenRSM system.
For instance, if the job is an inventory query the
agent registers inventory information about the
station it resides on and sends the information to
the inventory web application, hosted by the web
server of the OpenRSM system. OpenRSM was
designed to support the management of environ-
ments such as the GSN access network LANs that
typically take advantage of address translation
technologies (NAT) in order to preserve the IP
address space.

3 Deploying LiveWN in the School Network

Experience has shown that scaled installations
can be difficult, sometimes due to approaches
that lead to inadequate, unrealizable procedures.
An example is the case of the installation of a
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commercial platform for the remote management
of GSN school LANs. Whereas installing the man-
agement software in urban schools seemed feasi-
ble although inefficient, it proved difficult to
accomplish throughout the rest of the net-
work. The problems became insurmountable due
to the lack of support for customization and
configuration features that resulted to installation
procedures that could not scale. In many cases,
the distribution and installation of the agent soft-
ware of the service became a crucial issue. The
system could not be distributed via the internet,
due to the size of the agent distribution, making its
transfer via low bandwidth ADSL connections im-
practical. Sending the agent software in the form
of CD-ROMs and providing installation support
by phone or email did not solve the problem;
the software was not properly filed by schools, or
could not be configured by the school staff. Last
but not least, during the first steps of GSN’s de-
velopment when broadband penetration was low,
the system was not operational over narrowband
connections. Distributing software on a large scale
needs to be realizable from a technical and from a
design point of view. Distribution or roll-out prob-
lems can be overcome by using simple procedures,
based on usable solutions and well-established
technologies. The goal is to support flexible in-
stallation modes and multi-platform characteris-
tics. Until recent distributions, even well-known
proprietary remote management systems did not
exhibit such characteristics.

Even if effective management, decisions, pro-
cedures and approaches carefully eliminate the
limiting factors, the massive deployment of soft-
ware throughout a network must be feasible by
the configuration of the network itself. The design
of the GSN network infrastructure depends on
network address translation (NAT) technologies
in order to conserve public IP address space. Each
school lab is assigned a four IP address subnet for
the gateway router and the lab server. The labora-
tory server provides proxying and DHCP service
that assigns private addressing. This configuration
could not sustain a scalable remote installation
since it would pose restrictions to direct communi-
cation. The first step towards the configuration of
GSN infrastructure for scalable installations was
the modification of the addressing plan so that lab

subnets are assigned unique IP address ranges that
can be routed within GSN.

Considering the above, trying to distribute the
LiveWN CD or DVD via conventional ways
would be difficult. Instead, the OpenRSM agent
can be distributed via the internet . It is light-
weight and simple to use, can easily be distributed
via the internet, supports very simple installation
procedures and can manage all types of systems.
The installation can be executed by teachers with-
out any supervision since unattended installation
is supported. OpenRSM can then be used to de-
liver, install and execute LiveWN. The delivery
of LiveWN can depend on the software manage-
ment system developed by OpenRSM. Executing
LiveWN can be accomplished by virtualization
technologies. The VirtualBox [29] open solution
for workstation virtualization can be remotely in-
stalled and configured at school labs and scripting
can be employed to create virtual machines that
boot upon LiveWN. This solution provides an iso-
lated computational environment that can share
a fraction of the available resources. There are
virtualization solutions that exploit kernel com-
munication for optimal resource allocation how-
ever such solutions are suitable for servers and
cannot be deployed in GSN labs; thus Virtual-
Box can be an enabling compromise that will
enable a significant amount or resources to be
used. The ISO image distribution of LiveWN can
be the most appropriate since virtual machines
support booting ISO images. Taking into account
the network traffic and client space reservation,
the lightweight version (650 MB) can be used. The
feasibility of the described installation plan was
verified in laboratory conditions where the details
were clarified and the problems were identified
and solved. The verification procedure and the
results are presented in the next paragraph.

The implementation of LiveWN distribution
and installation via OpenRSM relies on the cre-
ation of appropriate management jobs that can
be massively sent to machines. The proof of con-
cept installation was tested within a LAN envi-
ronment of 20 workstations running Windows XP,
the operating system widely used in GSN school
laboratories. OpenRSM was tested for scalability;
in a similar environment during the stress tests,
OpenRSM could dispatch up to 40000 manage-
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ment jobs [10]. The agent of the systems was
installed via the internet and jobs were designed
to provide solutions for software transfer of
the LiveWN ISO image, the remote installation
Virtual Box, virtual machine configuration and
virtual machine execution. The steps of the proce-
dure are listed in Table 1. Transferring LiveWN
was achieved using standard OpenRSM soft-
ware delivery jobs. Appropriate packaging of the
LiveWN image was used, so that it would be
feasible to place the ISO file in a known, pre-
defined location. For Linux systems this included
a shell script that created the appropriate direc-
tories and moved the image. For windows, the
LiveWN distribution file was archived in a self-
extracting executable file (SFX) that was con-
structed via packaging tools and appropriately
configured to execute the aforementioned func-
tionality. The file was uploaded to the OpenRSM
server, encapsulated in a software delivery pack-
age and associated with a software delivery job.
The construction of the job was straightforward
and the execution was successful. However, there
were cases where the LiveWN ISO was also de-
compressed upon the execution of the delivery
job at the client end. In order to avoid such sit-
uations, an OpenRSM Remote Procedure Call
(RPC) job was used to configure the registry

at the client in order to disable ISO image de-
compression. The RPC job used the REG com-
mand to remove the appropriate registry value
by setting in the \HKEY_LOCAL_MACHINE\
SOFTWARE\Classes\.iso key read by the pack-
aging tool.

With the LiveWN image in place, the next
step was to remotely install VirtualBox, using
the OpenRSM delivery functionality. In order to
perform the installation without user interven-
tion, an MSI VirtualBox installation executable
was used, since it supports standard flexible in-
stallation modes. Since there is no official MSI
distribution for VirtualBox, the available installer
and installer conversion possibilities were inves-
tigated to discover the appropriate conversion
mechanisms. The installer extraction options of
the VirtualBox installer package can be used to
convert any version of the program that supports
it, to an MSI format that can then be remotely in-
stalled using standard switches. Figure 1 presents
the packaging form for the VirtualBox MSI at
the OpenRSM management console. The exe-
cutable was uploaded on the OpenRSM server
and the execution parameters for installation and
uninstallation were registered. A remote software
delivery job was created and parameterized so
that no interface would be exposed to the end

Table 1 Tasks and
implementation
approaches

High level task Implementation

OpenRSM Distribution via the web, single click, unattended installation
agent installation

LiveWN ISO delivery Configuration of a SFX archive
Disable ISO extraction at the local registry database
Configuration of a software package for LiveWN
Configuration of a software delivery job for LiveWN
LiveWN distribution

Driver signing bypass job Remote procedure call job for a script that emulates user input
VirtualBox installation Compilation of an MSI installer for unattended installations

Software package configuration for VirtualBox
Software delivery job creation for VirtualBox
VirtualBox delivery
Driver signing bypass job execution

Configure virtual machine Registration of the LiveWN ISO
Creation of Hard disks for the virtual machine
Creation of the virtual machine instance
Attachment of the LiveWN ISO to the virtual machine
Auto-capture disable script execution

Start virtual machine Remote procedure call to start the virtual machine



244 M.N. Kalochristianakis et al.

Fig. 1 The VirtualBox
remote installation job

users during the installation. The delivery job is
presented in Fig. 2. The installation was expected
to succeed; however, since VirtualBox installs
driver software and extensions that are not cer-

tified by Microsoft, even in the case of silent or
unattended installation visual warnings appeared,
requesting confirmation by the user. Automating
the confirmation, so that no user interaction is

Fig. 2 VirtualBox
package description
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required became a crucial issue, since manual
confirmation would linearize the installation pro-
cedure. To make matters worse, driver signing
confirmation is not included in the Windows API,
thus excluding the obvious solution of creating
programs that set the default value of driver sign-
ing to ignore and sending it to the clients prior
to VirtualBox delivery. For Windows server 2003
and later versions only, the executables can be
signed using the windows software development
kit (SDK).

Registry configuration RPC jobs were used to
set the driver signing policy to ignore warnings
only to verify that driver signing configuration is
not feasible by means of direct or indirect API
exploitation. The only solution could come by
using high level solutions, such as scripting. Win-
dows Script Host (WSH) was used to send click
signals to the clients, so that driver signing would
be configured visually, just as users would do it.
The script opens a file system explorer window
and simulates clicks via routines that can send sig-
nals to window objects. The “System Properties”,
“Diver Signing Settings”, “Hardware” and “My
Computer” tabs which were sequentially opened
by successive clicks and thus configuration took
place. The configuration of the virtualization soft-
ware also included the creation of the appropriate
scripts needed to configure a virtual machine that
would run LiveWN. The necessary steps included
the registration of the LiveWN ISO image with
the virtualization software, the creation of a vir-
tual hard disk, the creation of the virtual machine
and the attachment of the already delivered ISO
image and the virtual hard disk to the new vir-
tual machine. VirtualBox offers utilities capable
to execute the aforementioned tasks. Using the
remote command system of OpenRSM, the for-
mer functionality was implemented even if the
command syntax was complex and the length of
the parameter strings were big. For instance, the
command:

“vboxmanage openmedium dvd D:
\livewn_working_dir\dvd_images\
LiveWN-2_2_4-DVD-RC2.iso”

was encapsulated to the appropriate OpenRSM
job wrapper and was sent in order to register

the LiveWN ISO image with the virtualisation
software. Then a command such as:

“vboxmanage createhd -filename
D: \livewn_working_dir\ hard_disks\
livewnHD -size 6000”

was used to remotely create the necessary vir-
tual hard disk at the nodes. The virtual machine
was created by sending a remote procedure call
such as:

“vboxmanage createvm -name
livewn -ostype RedHat -basefolder
D:\livewn_working_dir\vms –register”

The former commands, as well as similar ones
that implemented the rest of the procedures,
were sent in batch mode using OpenRSM jobs
grouping. After the successful configuration of
the VirtualBox throughout the school lab, the
startvm command for VBoxManage was used to
initiate the virtual machine. The successful exe-
cution of LiveWN also required the creation of
a script for the deactivation of the auto-capture
feature of VirtualBox that binds the keyboard
and mouse for the exclusive control of the virtual
machine. If not disabled, a warning/confirmation
message will interrupt the initiation of the virtual
machine, requesting user confirmation. Disabling
this feature included changing attribute values for
parameters such as the ExtraDataItem in the Vir-
tualBox configuration file using simple windows
command line scripting and an appropriate RPC
job at the OpenRSM graphical console. After
that, the virtual machine input devices were not
free for use by the hosting system. Since the vir-
tual machine was configured with the LiveWN
ISO image attached to the DVD virtual drive, it
successfully booted from it and since the latter
was pre-configured to connect to HellasGrid it
immediately did so. All the workstations of the
pilot installation became connected grid nodes
and could execute arbitrary jobs.

The procedure described above can be applied
to any system that is distributed via bootable
images and it can easily be applied by expe-
rienced technicians. Once the problems regard-
ing operating system driver signing policies, or
virtual machine configuration have been iden-
tified and resolved via the corresponding RPC



246 M.N. Kalochristianakis et al.

Fig. 3 Performance of
the server system during
lab tests

jobs, the deployment of new systems or vir-
tual machines can be straightforward for typical
OpenRSM users that is, administrators of comput-
ing infrastructures. The same jobs can be reused,
or can be exploited as templates for the creation
of new deployments, for example future releases
of LiveWN with updated gLite stacks. It is also
worth noting that the procedure can be imple-
mented for any type of target platforms since
OpenRSM supports cross-platform infrastructure
management. The implementation for other types
of systems, such as open source platforms would
adhere to the same principles and configuration

but would be much easier considering the ease
of administration via command line jobs that in-
stall software and transfer files and the absence
of limiting factors such as driver signing policies.
The procedure was tested in lab conditions and
was then applied in a school laboratory. Even
if OpenRSM is known to perform in scale [10]
it was never tested before against the manage-
ment of very large volumes of data as part of
complex scenarios. Thus, the lab tests aimed to
monitor the behavior of the basic components of
the system and identify potential problems, un-
predicted behavior or performance bottlenecks.

Fig. 4 Performance of
the OpenRSM server
software during the lab
test
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Figures 3 and 4 illustrate plots for characteristic
metrics of the hosting system and the OpenRSM
service respectively, measured during the batch
disposal of LiveWN installations at the lab. When
jobs are sent from the management console, the
OpenRSM service loads the required data that
is, the LiveWN ISO image and thus the I/O op-
erations peek in Fig. 4. The management service
is designed to integrate management tools by
orchestrating their execution and it immediately
passes the control to appropriate components
that call system services capable to deliver data.
Figure 4 shows that the load from the execution
of the service is negligible; the server is primarily
stressed by I/O operations since it needs to deliver
LiveWN to remote stations and by page faults
due to the size of the image. The former obser-
vations comply with the stress test results in [10]
that show how OpenRSM scales to the limits of
the underlying hardware. Figure 3 presents more
detailed allocation of CPU time during the dis-
patch of a job that distributes LiveWN throughout
the infrastructure. It shows how processor time
is allocated and how the number of system calls,
processes and threads vary during the remote
installation of LiveWN. It can be seen that the
processor is occupied by in system mode in or-
der to call system services that handle resources
such as disc space and network. All metrics that
relate to operational functionality peek when the
system processes the LiveWN images, while the
number of threads and processes is practically
constant.

4 Summary and Conclusions

We presented a solution for the creation of
scaled remote desktop grid installations using the
LiveWN desktop grid system and the OpenRSM
remote management tool. The procedures were
designed to be general so as not to limit the ap-
plicability of the solution. OpenRSM was capa-
ble to provide the infrastructure for the remote
deployment of LiveWN and although the solu-
tion was tested in a LAN environment enumer-
ating only 20 workstations, all the jobs, actions
and procedures were designed to scale and thus

produce results irrespectively of the size of the
network.

The current work has shown that a scaled instal-
lation of LiveWN in GSN that will use OpenRSM
as the remote installation infrastructure is feasi-
ble, provided that all the procedures can reach the
appropriate scale. Experience in the deployment
of the commercial remote management service for
GSN has shown that if details are not accounted
for, they can create insurmountable problems in
the large-scale by linearizing procedures. All the
installation aspects must be studied, including
both managerial procedures and implementation.
Small scale tests such as the current work are
also necessary. The previous paragraphs prove
that appropriate infrastructure selection, combi-
national engineering work and smart, scalable
solutions are vital for supporting of such deploy-
ments. More specifically, the idea of automatically
and remotely creating virtual machines for the
hosting the grid nodes can be important since it
enables the creation of grid infrastructures in GSN
without disrupting the educational procedure. It
also eliminates the need for physically distributing
the desktop Grid system and using manpower
to insert the LiveCD media in the workstations
and booting them. The development of scripts or
taking advantage of code can also be an enabling
detail. The case of bypassing unwanted operat-
ing system features or checks such as the driver
signing policies seen in the previous paragraphs is
characteristic.

Future work will include steps towards the
scaled installation of a pilot desktop grid in GSN.
The installation will start with the deployment in
a small number of school labs before going full
scale. The upcoming LiveWN releases are expected
to follow the evolution in the grid technologies
it supports. Also, lightweight releases and form
factors that facilitate scalable installations and
set-up times are considered. Future releases of
LiveWN will include an OpenRSM agent so that
installations can support inherent management.
Future work on OpenRSM will focus on integrat-
ing more functionality in the field of open inte-
grated systems and network management. It will
also include deeper integration with LiveWN by
supporting default functionality for the automatic
download of ISO images and updates. In that case,
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a prospective scaled installation within GSN will
inherently support desktop grid network creation.
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