
Multiple-Input and Shared Buffer Architectures for
Asynchronous Optical Burst Switching Networks

Konstantinos Yiannopoulos, Emmanouel Varvarigos, Kyriakos Vlachos, member IEEE
Computer Engineering and Informatics Dept and Research Academic Computer Technology Institute,

University of Patras, Rio 26500, GREECE (skype: kvlachos, email: kvlachos@ceid.upatras.gr)

Abstract— In this paper, we present the architectural design of
optical burst-buffers that can truly emulate input queuing and
accommodate asynchronous burst operation. The architectural
design uses wavelength converters and fixed feed-forward delay
lines that are combined to form either a multiple-input buffer or
a shared buffer. Both schemes are modular, allowing the
logarithmic expansion of buffer size with the number of
switching elements (wavelength converters).

Optical burst switching; optical buffers; input queuing;
wavelength converters; programmable delay.

I. INTRODUCTION
Optical buffering is an important functionality in optical

burst-switched networks. It allows the temporal storing of data
bursts to resolve contention for the switch outputs. Various
solutions have been proposed up to including programmable
delay lines [1] and optoelectronic conversion [2]. Electronic
buffering has been extensively utilized in currently installed
optical networks at a great cost and complexity and is limited
by the electronic processing speeds and the relative slow O/E
and E/O conversion times. On the other hand, programmable
delay lines have been extensively used to form feed-forward or
re-circulating schemes, employing in addition wavelength
conversion to enhance buffering capabilities [3], [4]. Most
schemes, however, assume slotted operation that requires
complex scheduling algorithms and thus are not suitable for
asynchronous optical burst switching.

In particular, feedback loops theoretically provide infinite
storage time, but they suffer from noise accumulation and
OSNR degradation. Further, they require that the length of the
feedback loop matches exactly the burst duration in order to
avoid loss of synchronization and that a large number of them
is used to keep the blocking probability small. In contrast, feed-
forward delay line buffers are easier to implement, since the
difference in the length of optical paths has to match a segment
of the burst duration (timeslot). Moreover, even though feed-
forward delay line architectures allow for short buffering times,
recent studies indicate that statistically multiplexed optical
networks will require only minimal buffering [5], provided
some traffic engineering is performed.

For these reasons, feed-forward delay line buffer
architectures are a more practical solution for implementing
limited optical buffering in burst switched networks. Within
this context, we present in this communication an optical burst

buffer architecture that is based on the feed-forward-delay-line
concept that can truly emulate input queuing and accommodate
asynchronous burst operation. The architectural design uses
wavelength converters and fixed length delay lines to internally
route data. These are combined together to form either a
multiple-input buffer design, where a separate input buffer is
employed per input port, or a shared buffer design, where the
same optical buffer is shared by all input ports. The latter
significantly decreases the individual number of fiber delays
needed. Both schemes are modular in the sense that buffer size
increases logarithmically with the number of programmable
delays. Moreover, as we show later on, the use of multiple
wavelengths to route internally data bursts minimizes the
number of delay stages needed and, thus, the number of active
devices. In our analysis, we have assumed a wavelength tuning
range of w. The rest of the paper is organized as follows: in
Section II the multiple-input buffer design that consists of
parallel Time-Slot-Interchangers (TSIs) and emulates input
queuing is presented. In Section III we present the shared
buffer design that emulates distributed buffering among all
incoming / outgoing links of the optical switch. Finally,
Section IV concludes the paper.

II. MULTIPLE-INPUT BUFFER ARCHITECTURE
In the current section we discuss the architecture of a feed-

forward buffer that is capable of storing on-the-fly optical
bursts that arrive at its inputs. Storage is accomplished by
delaying the bursts and variable storage times are feasible by
introducing programmable delay elements inside the buffer. To
facilitate our analysis, we assume that time is divided in time
frames, and bursts are confined within the limits of the time
frame they have arrived. We assume that the time frame
contains T timeslots and that each burst asynchronously
occupies a number of consecutive timeslots. Under this scheme
providing variable storage time for the bursts is readily
translated to interchanging timeslots. As a result the buffer is
equivalent, in terms of functionality, to k parallel Time-Slot-
Interchangers (TSIs), one per input port of the buffer, as in Fig.
1(a). Each TSI constitutes an input buffer of size T and consists
of s serially connected programmable delay stages, as shown in
Fig. 1(b). The architecture takes advantage of the wavelength
parallelism that WDM offers, with a goal to minimize the
number of serially connected stages, and consequently the
hardware cost. A tunable wavelength converter (TWC), which
is capable of providing w separate wavelengths at its output, is
deployed at the input of the respective delay stage. The TWC
assigns the bursts to wavelengths based on the delay line that
the bursts must access in the delay bank. Mapping between

The work was supported by the Operational Program for Educational and
Vocational Training (EPEAEK), PYTHAGORAS II Program and by EU via
the IST/NoE e-Photon/ONe+ project.

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2283

wavelengths and delay lines is achieved by means of a passive
wavelength demultiplexer, while a wavelength multiplexer
feeds the delayed bursts to the next stage. The delays D(i,j) that
are introduced at each stage will be derived from the space-
time graph of the input-buffer architecture [6] in the subsection
that follows.

A. Formation of the space-time graph
The space-time graph that corresponds to the first stage of

the TSI (Stage 0) is shown in Fig. 2. As discussed in [6], the
space-time graph of the input-buffer consists of nodes located
at columns and rows. Columns i and i+1 represent the inputs
and outputs, respectively, of input-buffer stage i, while rows
account for the timeslots. Nodes that are located at the input of
stage i connect to nodes at the stage output with time
transitions, which are presented as straight lines on the space-
time graph. Time transitions inside the input-buffer stage i
correspond to the burst accessing a delay line, and as a result
time transitions may not access output nodes that are located at
previous timeslots.

Our goal is to select the time transitions, or equivalently the
delay times D(i,j), at each stage so as to construct a logn-Benes
interconnection network on the space-time graph. The purpose
of constructing the logn-Benes network is two-fold: the
network requires a minimum number of serially connected
stages that equals

2 1 2 log 1ns m T= ⋅ − = ⋅ −⎡ ⎤⎢ ⎥ (1)

for a given number T of timeslot per time frame, where n is the
logn-Benes crossbar size. The network is also re-arrangably
non-blocking, therefore the input-buffer is capable of switching
without internal collisions. Eq. (1) shows that by constructing
the logn-Benes network, one can achieve a drastic reduction in
the number of stages, as compared to previously reported work
that was based on log2-Benes networks [7], [8]. Furthermore,
finding a collision free path within the Benes network is a well
studied problem [9].

The building blocks of the logn-Benes network are n x n
crossbar switches, and thus the first step in constructing it is to

determine the size of the crossbars. The crossbars are formed
out of time transitions on the space-time graph, as is shown in
Fig. 2. Since only downward time transitions are allowed at the
space-time graph, the output timeslots that are available to all n
input timeslots are limited to w-n+1. Since the inputs of the
crossbar equal its outputs, we find that

11
2

wn w n n +⎢ ⎥= − + ⇔ = ⎢ ⎥⎣ ⎦
 (2)

with x⎢ ⎥⎣ ⎦ denoting the integer part of x. As a result,
approximately 50% of the available wavelengths contribute to
the formation of the crossbars that comprise the logn-Benes,
even though all available wavelengths are required to route
packets inside the buffer.

The second step is to determine the time transitions that
construct the logn -Benes network, and the process is shown in
Fig. 3(a) for the first and second stage of the input-buffer, as
well as in Fig. 3(b)-(c) where the network of Fig. 3(a) is
transformed to a standard representation. The construction of
the logn-Benes network requires that at each stage i, the
crossbars are formed between timeslots that are located ni
positions apart, as is illustrated in the equivalent network
representations of Fig. 3(b)-(c). This corresponds to setting the
switch time delays, in timeslots, equal to [7]:

 (,) , 0, ..., 1, 0, ..., 1.iD i j j n i m j w= ⋅ = − = − (3)

The delays account for all time transitions on the space-time
graph, even though only n time transitions per timeslot node
contribute to the formation of the virtual crossbars. The
remaining inactive transitions introduce a constant delay after
which the output time frame commences (white squares in Fig.
3(a)). At the output of each stage, the delay equals

()1 , 0, ..., 1i
i n n i m∆ = ⋅ − = − (4)

timeslots and as a result the total delay that the bursts
experience when traversing the buffer is

() ()
1 2

0 0
1 1 2

m m
i i

i i

Tn n n n T
n

− −

= =

∆ = ⋅ − + ⋅ − = + −∑ ∑ (5)

timeslots. Eq. (5) may be viewed upon as constant storage
latency introduced by the buffer.

Figure 2. Derivation of the crossbar size on the space-time graph.

Figure 1. (a) The multiple-input-buffer architecture. (b) The structure of each
stage in the input-buffer. λ-conv is the tunable wavelength converter and λ-
MUX/DEMUX are the wavelength multi- and demultiplexers.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2284

B. Asynchronous operation in an OBS node
The proposed buffer may be cascaded by a space switch to

form the switching core of an OBS node [8]. Even though the
logn-Benes interconnection network ensures that there are no
collisions inside the TSIs, collisions may still occur at the
outputs of the space switch if two or more bursts require
accessing the same switch output at the same time. Losses are
avoided by ensuring that the respective timeslots do not
coincide at the space switch, and this is systematically achieved
by means of the scheduling algorithm that we illustrate in Fig.
4. According to the scheduling algorithm, we partition the time
frame into k successive sub-frames of equal duration. We then
label the sub-frames at a buffer output p with a (p-1)-times
cyclic shift of {1,2,…,k} and assign input timeslots that head
for a switch output q to the respective output sub-frame. Since
sub-frame q never occurs simultaneously at two buffer outputs,
losses are avoided provided that the total duration of bursts
(measured in timeslots) that arrive at buffer input p and are
destined for switch output q is limited by

, 1 , .pq
Td p q k
k

≤ ≤ ≤ (6)

After mapping the timeslots at the inputs to timeslots at the
outputs of the buffers, it is necessary to determine the delays
that have to be introduced to the content of the input timeslots
so as to appear at the respective assigned timeslots at the output
of the buffer. This is equivalent to routing the timeslots on the
logn-Benes interconnection network of Fig. 3 and is achieved
by means of a parallel Benes routing algorithm. The algorithm
is an extension of a low complexity ()2log TΟ parallel
routing algorithm on a binary Benes network [9], which
involves setting the state of the outermost crossbars (at stages 0
and s-1) of the Benes network after solving permutation vector

equations. The outermost crossbars are then omitted, and the
remaining network is partitioned into a number of Benes sub-
networks of reduced size. The algorithm is recursively applied
on the resulting sub-networks until the state of all crossbars in
the networks is set. An example of the routing algorithm is
detailed in the following subsection.

C. Benes routing in the logn-Benes network
A routing example for the logn-Benes network of Fig. 3 is

illustrated in Fig. 5 for n = 3 and T = 9. The timeslots at the
input of the buffer (stage 0) are assigned successive n-ary
values, and the respective input permutation vector is formed.
The permutation vector that corresponds to the output of the
buffer (stage s-1) is formed in a similar fashion, after taking
into consideration which output is assigned to each input
timeslot. In the example of Fig. 5 the input and output
permutation vectors are

()
()
00 01 02 10 11 12 20 21 22

02 21 22 20 00 11 01 10 12 .
in

out

π

π

=

=
 (7)

We first focus on the input permutation vector. After exiting
stage 0 on the space-time graph, the input permutation vector
becomes

()0 8 7 6 5 4 3 2 1 00 0 0 1 1 1 2 2 2 .a a a a a a a a aπ =
 (8)

This corresponds to time transitions for which αi denote the
output nodes that have been accessed. In a similar fashion, the
output permutation vector at the input of stage s is

()2 2 7 8 6 0 4 1 3 50 2 2 2 0 1 0 1 1b b b b b b b b bπ = (9)

with bi referring the input nodes that have been accessed by the
inverse time transitions. In Eq. (9), bi are assigned to rows
according the output permutation vector, due to the symmetry
of the logn-Benes network. Moreover, the symmetry of the
network imposes that αi and bi that are located in a common
row are equal, and as a result T equations that correlate αi and
bi are derived. The equations are solved after taking into
consideration that αi (and bi) satisfy

{ }, , , 0,1, ..., 1m n i m n ja a i j i j n⋅ + ⋅ +≠ ≠ ∈ − (10)

so that no collisions occur inside the crossbars. Following (10),
the solution to (8) and (9) is calculated as

Figure 4. Timeslot assignment at the multiple-input buffer architecture.

Figure 3. Formation of the logn-Benes network on the space-time graph.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2285

()
()

0

2

02 01 00 12 10 11 21 20 22

02 21 20 22 00 11 01 10 12 .

π

π

=

=
 (11)

After solving the equations for the outermost stages of the
logn-Benes network, we remove the aforementioned stages and
divide the remaining network into three (n in general) sub-
networks. The permutation vectors of each sub-network are
derived from (11) after grouping together the vector elements
that have a common least significant symbol

() ()
() ()
() ()

0 0

1 1

2 2

0 1 2 2 0 1

0 1 2 2 1 0

0 1 2 0 2 1 .

in out

in out

in out

π π

π π

π π

= → =

= → =

= → =

 (12)

No further permutation vectors have to be evaluated for the
specific example, since the permutation vectors of (11) and
(12) suffice to define the state of the crossbars at all stages. The
state of a crossbar at stage l is set after isolating the
permutation vector elements that correspond to the specific
crossbar and taking into account their least significant symbols.
We assume that the aforementioned symbols form the reduced
permutations vectors ρl

in and ρl
out at the input and output of

each stage; for instance these are

()
()

0

0

0 1 2 0 1 2 0 1 2

2 1 0 2 0 1 1 0 2

in

out

ρ

ρ

=

=
 (13)

in our example. It is straightforward to verify from Fig. 3(a)
that routing inside the logn-Benes network corresponds to
setting the delays at each stage equal to

() , 0out in l
l l l ld n l sρ ρ= ∆ + − ⋅ ≤ < (14)

where ∆l is given by (4). This is feasible by setting the
wavelengths of the respective wavelength converters equal to

, 0 .out in
l l lw n l sρ ρ= + − ≤ < (15)

III. SHARED BUFFER ARCHITECTURE
In the previous section we discussed a buffering

architecture that involves deploying one buffer per input. The
architecture is optimal as far as the number of delay stages, but
it requires the traffic that arrives at the buffer to be equally
distributed among its inputs, according to (6). In the current
section we discuss a shared-buffer architecture that requires
less strict traffic conditions than (6) for lossless operation. The
proposed design, which is shown in Fig. 6(a), consists of
serially connected delay stages that are accessible by all input

ports, as detailed in Fig. 6(b). At each delay stage, k parallel
wavelength converters assign the incoming bursts to
wavelengths that correspond to a pair of delay lines and output
ports. The delay lines and output ports are accessed by the
bursts through all-passive space switches. Similar to Section II,
our goal is to define the delays D(i,j) that are introduced at each
stage so that an optimal interconnection network is constructed
on the space-time graph.

A. Formation of the space-time graph
The space-time graph of the shared buffer architecture is

illustrated in Fig. 7. In contrast to the space-time graph we
discussed in Section II, each timeslot node in the space-time
graph of the current architecture includes k separate space
nodes that correspond to the delay stage inputs and outputs, as
illustrated at the inset of Fig. 7. All transitions between the
input and output space nodes of a delay stage are valid within a
timeslot, since all outputs of stage may be accessed by any
stage input in Fig. 6(b). Time transitions are limited only to
nodes that correspond to the current timeslot or future ones. For
the rest of this section we consider only time transitions and
timeslot nodes on the space-time graph, so as to simplify the
illustration of our analysis. However, during the time
transitions between input and output timeslot nodes, we assume
that all k space input and output nodes that lie within the
respective timeslots are connected with space transitions. This
is equivalent to constructing the interconnection network on the
time transitions of the space-time graph, and afterwards
expanding the crossbars and connections of the resulting
network by a factor of k.

Within this context, our goal is to construct a logd-Benes
interconnection network on the time transitions of the space-
time graph that corresponds to the shared buffer architecture.
The procedure is quite similar to that described in the previous
section: we first determine the size d x d of the elementary
crossbar and based upon this, we form the logd-Benes network
on the space-time graph. The number wa of timeslots on the
space-time graph that are fully accessed at the output of the
current stage equals the wavelength tunability w normalized by

Figure 6. (a) The shared buffer architecture. (b) At the respective stages, each
wavelength is assigned to a pair of delays and output ports.

Figure 5. Routing in the logn-Benes network.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2286

the number of ports k

a
ww
k

⎢ ⎥= ⎢ ⎥⎣ ⎦
 (16)

and as a result, the size of the crossbars is calculated as

1
1 .

2 2
a

w
w kd

⎡ ⎤⎢ ⎥ +⎢ ⎥⎢ ⎥+⎢ ⎥ ⎣ ⎦⎢ ⎥= =⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (17)

The logd-Benes network is formed as in Fig. 8(a)-(c), by setting
the delays equal to

(,) , 0, ..., 1, 0, ..., 1.i
aD i j j d i m j w= ⋅ = − = − (18)

Similar to the multiple-input buffer design, only d time
transitions are utilized per timeslot, and as a result the bursts
experience a storage latency that is calculated in timeslots as

() ()
1 2

0 0
1 1 2.

m m
i i

i i

Td d d d T
d

− −

= =

∆ = ⋅ − + ⋅ − = + −∑ ∑ (19)

The fully expanded network that includes space transitions
is derived in Fig. 8(c) after taking into consideration that the
size of the crossbars becomes n k d= ⋅ and that each time
transition corresponds to k space transitions. The fully
expanded network is re-arrangably non-blocking and thus the
shared buffer architecture performs buffering without internal
losses. The number of delay stages that are required is given by

2 1 2 log 1.ds m T= ⋅ − = ⋅ −⎡ ⎤⎢ ⎥ (20)

The number of delayed stages is therefore not optimal, and this
is because we have constructed a logd-Benes network on the
time transitions instead of a logn-Benes networks on both time
and space transitions. However, this drawback of the shared
buffer architecture is balanced by the fact that it requires less
strict traffic conditions to achieve lossless operation, as we
show in the following subsection.

B. Asynchronous operation in an OBS node
The shared buffering architecture may be readily deployed

in an OBS node without cascading the space switch that is
required by the multiple-input buffer, since buffering and
output port assignment are performed independently.
Moreover, the re-arrangably, non-blocking property of the
expanded interconnection graph of Fig. 8(c) ensures that no
burst collisions take place inside the shared buffer, provided
that the total traffic that arrives to all buffer inputs and heads
for a specific buffer output does not exceed T timeslots within a
time frame. This is a looser traffic condition than (6), since
incoming traffic does not have to be equally distributed among
all buffer inputs.

Bursts that arrive within the same time frame are placed on
a common outgoing frame, which commences after ∆
timeslots. The timeslots that the bursts occupy at the outgoing
time frame are assigned according to a modification of the
packing rule [8]. The modified packing rule is illustrated in
Fig. 9, according to which, bursts heading for a common
outgoing link, and thus the respective timeslots they occupy,
are logically grouped together, and the timeslots that belong to
the same group are given ranks. A rank of a timeslot equals r, if
it is the r-th timeslot that has arrived at incoming link p and
heads for outgoing link q. A timeslot at the incoming time
frame with rank r will be mapped at the output time frame to
timeslot

{ }
1

,
1

1, 0, ..., 1 ,
p

l q
l

y n r y T
−

=

= + − ∈ −∑ (21)

where nl,q is the total duration of bursts, in timeslots, between
incoming link l and outgoing link q. After timeslot assignment,

Figure 8. Formation of the logd-Benes network on the time transitions of the
space-time graph.

Figure 7. Derivation of the elementary crossbar on the space-time graph.
Each node of the space-time graph representing timeslots is expanded to k
separate nodes that corresponds to the input/output ports.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2287

a modified parallel Benes routing algorithm sets the delays that
timeslots experience inside the buffer stages, similar to Section
II. We detail an example in the expanded logd-Benes network
of Fig. 8 in the next subsection.

C. Benes routing for the logd-Benes network
A routing example for n = 4 (k = 2, d = 2) and T = 4 in the

logd-Benes network is detailed in Fig. 10. The input and output
permutation vectors are given by

()
()

 00 01 02 03 10 11 12 13

00 01 03 11 02 10 12 13 .
in

out

π

π

=

=
 (22)

The permutation vectors at the output of stage 0 and the input
of stage s-1 are calculated as

()
()

0 0 1 2 3 4 5 6 7

2 0 1 3 5 2 4 6 7

 0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1 .

a a a a a a a a

b b b b b b b b

π

π

=

=
(23)

Eq. (23) is solved for ai and bi using the symmetry properties of
the expanded logd-Benes network, after taking into account
(10). The solution is facilitated, however, by the fact that
crossbars are connected with groups of k-parallel lines in the
expanded network. As a result, ai (and bi) that correspond to
the same k-parallel line group may be interchanged, since they
originate from and head for the same crossbar. Thus

{ }, , , 0,1, ..., 1 .m n i m n ja a i j i j k⋅ + ⋅ +↔ ≠ ∈ − (24)

A solution to our example is

()
()

0

2

00 01 02 03 13 12 11 10

00 01 02 13 03 12 11 10 .

π

π

=

=
 (25)

We then omit the outermost crossbars and divide the resulting
network into two (d in general) sub-networks. The permutation
vectors for the new networks are formed after grouping
together the vector elements which have least significant
symbols z that are located between

(), 1 1 , 0 .z i k i k i d⎡ ⎤∈ ⋅ + ⋅ − ≤ <⎣ ⎦ (26)

In the example of Fig. 10 we find that

() ()
() ()

0 0

1 1

00 01 11 10 00 01 11 10

02 03 13 12 02 13 03 12
in out

in out

π π

π π

= → =

= → =
 (27)

Eq. (27) are readily solved after re-numbering the vector
elements with respect to their order

() ()
() ()

0 0

1 1

0 1 3 2 0 1 3 2

0 1 3 2 0 3 1 2 .
in out

in out

π π

π π

= → =

= → =
 (28)

Eq. (25) and (28) define the state of all crossbars in the
network. Having determined the state of the crossbars, we
calculate the reduced permutation vectors ρl

in and ρl
out at each

stage and the respective wavelengths are derived from Eq. (15).

IV. CONCLUSION
We have presented the architectural design of two optical

burst buffers. Both designs use wavelength converters and
fixed delay lines that are combined to form a multiple-input
buffer or a shared buffer. The designs are modular, allowing
for the logarithmic expansion of buffer size with the number of
switching elements (wavelength converters). Wavelength
parallelism is used to achieve a significant decrease in the total
number of delay stages needed, as compared to previous work.
Furthermore, we have also proposed architecture-specific
algorithms for providing contention resolution within the
buffering time, as well as algorithms for scheduling the internal
wavelengths.

REFERENCES
[1] D.K. Hunter et al., “Buffering in optical packet switches,” IEEE/OSA J.

Lightw. Technol., vol. 16, no. 12, pp. 2081-2094, Dec. 1998.
[2] S. Bjørnstad, N. Stol, D. R. Hjelme, “An Optical Packet Switch Design

with Shared Electronic Buffering and Low Bit Rate Add/Drop Inputs,”
in Proc. ICTON 2002, pp. 69-72.

[3] M. C. Chia et al. “Packet Loss and Delay Performance of Feedback and
Feed-Forward Arrayed-Waveguide Gratings-Based Optical Packet
Switches With WDM Inputs–Outputs,” IEEE/OSA J. Lightwave
Technol., vol. 19, no. 9, pp. 1241-1254, Sept. 2001.

[4] C.M. Gauger, “Dimensioning of FDL buffers for optical burst switching
nodes,” in Proc. ONDM 2002, pp. 202-221.

[5] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Routers with Very Small Buffers,” in Proc. IEEE INFOCOM 2006.

[6] D.K. Hunter, and D.G. Smith, “New architectures for optical TDM
switching,” IEEE/OSA J. Lightwave Technol., vol. 11, no. 3, pp. 495-
511, Mar. 1993.

[7] D.K. Hunter et al., “SLOB: A Switch with Large Optical Buffers for
Packet Switching,” IEEE/OSA J. Lightwave Technol., vol. 16, no. 10,
pp. 1725-1736, Oct. 1998.

[8] E. A. Varvarigos, “The ‘Packing’ and the ‘Scheduling’ packet switch
architectures for almost all-optical lossless networks,” IEEE/OSA J.
Lightwave Technol., vol. 16, no. 10, pp. 1757–67, Oct. 1998.

[9] T.T. Lee et al., “Parallel Routing Algorithms in Benes-Clos Networks,”
IEEE Trans. Commun., vol. 50, no. 11, Nov. 2002, pp. 1841–47.

Figure 10. Routing in the expanded logd-Benes network.

Figure 9. Timeslot assignment in the shared buffer architecture.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2288

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

