

W_i = Waiting time in the queue of the *i*th customer

- R_i = Residual service or vacation time seen by the *i*th customer. By this we mean that if customer *j* is already being served when *i* arrives, R_i is the remaining time until customer *j*'s service time is complete. If no customer is in service (i.e., the system is empty when *i* arrives), then R_i is zero
- X_i = service time of the *i*th customer
- N_i = Number of customers found waiting in queue by *i*th customer upon arrival *i* (assume FCFS, even though not necessary)

- All packets has constant service time = 1 unit of time
- Service of packet can begin only at the beginning of a slot

$$E(X) = E(X^{2}) = 1$$

$$E(V) = E(V^{2}) = 1$$

$$W = \frac{\lambda E(X^{2})}{2(1-\rho)} + \frac{E(V^{2})}{2E(V)} = \frac{\lambda}{2(1-\lambda)} + \frac{1}{2}$$
M/D/1 without slots

Example 3.16

m traffic streams of equal-length packets.

Poisson arrival with each rate $\frac{\lambda}{m}$

FDM: service time = *m*

M/D/1 with $\frac{\lambda}{m}$, $\mu = \frac{1}{m}$

$$W_{FDM} = \frac{\lambda \cdot \overline{X^2}}{2(1-\rho)} = \frac{\lambda \cdot \overline{X}^2}{2(1-\rho)} = \frac{\rho}{2\mu(1-\rho)} = \frac{\lambda m}{2(1-\lambda)}$$

Slotted FDM: packet transmissions start at times *m*,

2*m*, 3*m*,.....

M/D/1 with vacations

$$\overline{V} = m, \overline{V^2} = m^2$$

$$W_{SFDM} = W_{FDM} + \frac{V^2}{2V} = W_{FDM} + \frac{m}{2} = \frac{m}{2(1-\lambda)}$$

Reservation Systems

Reservation system with a single class of users

- Data intervals and reservation intervals alternate.
- All packets arriving during one data interval and preceding reservation interval wait until the next reservation interval to make a reservation ("gated" version)
- reservation intervals are iid and independent of arrivals and service time

R is the same as in *M/G/1* with vacations

The residual service time is the same as in the

vacation case, so

$$W = \frac{\lambda(E(X^2))}{2(1-\rho)} + \frac{E(V^2)}{2E(V)} + \frac{E(V)}{1-\rho}$$

M/G/1 vacations

If all reservation intervals are of constant duration *V*,

$$W = \frac{\lambda \cdot E(X^2)}{2(1-\rho)} + V \cdot \left(\frac{1}{2} + \frac{1}{1-\rho}\right)$$