M/G/1 with vacations

Arrivals and Service times are independent
Whenever a busy period finishes, the system goes
"on vacation" for some random interval of duration V.

Vacation times are independently and identically distributed with known $E(V)$ and $E\left(V^{2}\right)$.

They are also independent of arrival times and service times.
departure of i th customer
arrival of ith customer

residual time time for N_{i} customers for service or to be serverd vacation

$W_{i}=$ Waiting time in the queue of the th customer
$R_{i}=$ Residual service or vacation time seen by the th customer. By this we mean that if customer j is already being served when i arrives, R_{i} is the remaining time until customer j 's service time is complete. If no customer is in service (i.e., the system is empty when i arrives), then R_{i} is zero
$X_{i}=$ service time of the th customer
$N_{i}=$ Number of customers found waiting in queue by th customer upon arrival i (assume FCFS, even though not necessary)
arrival of eth customer
departure of i th customer

residual time time for \boldsymbol{N}_{i} customers for service or to be served vacation

Formula $W=\frac{R}{1-\rho}$ still holds,
but $R=\frac{\lambda E\left(X^{2}\right)}{2}+\frac{(1-\rho) \cdot E\left(V^{2}\right)}{2 E(V)}$

$$
\begin{aligned}
& W_{i}=R_{i}+\sum_{j=i-N_{i}}^{i-1} X_{j} \\
& \Rightarrow E\left(W_{i}\right)=E\left(R_{i}\right)+E\left(\sum_{j=i-N_{i}}^{i-1} X_{j}\right) \\
& \Rightarrow E\left(W_{i}\right)=E\left(R_{i}\right)+E\left(N_{i}\right) E(X)
\end{aligned}
$$

$i \rightarrow \infty$

$$
W=R+N_{Q} \cdot \frac{1}{\mu}
$$

$N_{Q}=\lambda W$

$$
\Rightarrow W=R+\lambda W \cdot \frac{1}{\mu}=R+\frac{\lambda}{\mu} W
$$

$\frac{\lambda}{\mu}=\rho$

$$
\Rightarrow W=\frac{R}{1-\rho}
$$

Proof of $R=\frac{\lambda E\left(X^{2}\right)}{2}+\frac{(1-\rho) \cdot E\left(V^{2}\right)}{2 E(V)}$
$r(\tau)=$ residual time for packet in service

Let $M(t)=\#$ of service completed by time t
$L(t)=$ \# of vacation completed by time t
Time average of $r(\tau)$ up to time t

$$
\begin{aligned}
& =\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{t}\left(\sum_{i=1}^{M(t)} \frac{1}{2} X_{i}^{2}+\sum_{i=1}^{L(t)} \frac{1}{2} V_{i}^{2}\right) \\
& =\frac{1}{2} \cdot \underbrace{\frac{M(t)}{t}}_{=\lambda} \cdot \underbrace{\frac{\sum_{i=1}^{M(t)} X_{i}^{2}}{M(t)}}_{=E\left(X^{2}\right)}+\frac{1}{2} \cdot \underbrace{\frac{L(t)}{t}}_{=\frac{1-\rho}{E(V)}} \cdot \underbrace{\frac{\sum_{i=1}^{L(t)} V_{i}^{2}}{L(t)}}_{=E\left(V^{2}\right)}
\end{aligned}
$$

$t \rightarrow \infty$

$$
\begin{gathered}
(1-\rho) t=L(t) \cdot E\left(V \Rightarrow \frac{L(t)}{t}=\frac{1-\rho}{E(V)}\right. \\
\Rightarrow R=\frac{\lambda E\left(X^{2}\right)}{2}+\frac{(1-\rho) \cdot E\left(V^{2}\right)}{2 E(V)} \\
W=\frac{R}{1-\rho}=\underbrace{\frac{\lambda E\left(X^{2}\right)}{2(1-\rho)}}+\underbrace{\frac{E\left(V^{2}\right)}{2 E(V)}}
\end{gathered}
$$

M/G/1 delay additional delay due to vacations

Example: slotted M/D/1 system

- All packets has constant service time $=1$ unit of time
- Service of packet can begin only at the beginning of a slot

$$
\begin{aligned}
& E(X)=E\left(X^{2}\right)=1 \\
& E(V)=E\left(V^{2}\right)=1 \\
& W=\frac{\lambda E\left(X^{2}\right)}{2(1-\rho)}+\frac{E\left(V^{2}\right)}{2 E(V)}=\underbrace{\frac{\lambda}{2(1-\lambda)}}_{M / D / 1}+\frac{1}{2}
\end{aligned}
$$

Example 3.16

m traffic streams of equal-length packets.
Poisson arrival with each rate $\frac{\lambda}{m}$
FDM: service time $=m$
M/D/1 with $\frac{\lambda}{m}, \mu=\frac{1}{m}$

$$
W_{F D M}=\frac{\lambda \cdot \overline{X^{2}}}{2(1-\rho)}=\frac{\lambda \cdot \bar{x}^{2}}{2(1-\rho)}=\frac{\rho}{2 \mu(1-\rho)}=\frac{\lambda m}{2(1-\lambda)}
$$

Slotted FDM: packet transmissions start at times m,
$2 m, 3 m,$.
M/D/1 with vacations

$$
\begin{aligned}
& \bar{V}=m, \overline{V^{2}}=m^{2} \\
& W_{S F D M}=W_{F D M}+\frac{\overline{V^{2}}}{2 \bar{V}}=W_{F D M}+\frac{m}{2}=\frac{m}{2(1-\lambda)}
\end{aligned}
$$

TDM with $m=4$ traffic streams

$$
\begin{aligned}
W_{T D M} & =W_{S F D M} \\
T_{F D M} & =m+W_{F D M} \\
T_{S F D M} & =\frac{3 m}{2}+W_{F D M} \\
T_{T D M} & =1+\frac{m}{2}+W_{F D M}
\end{aligned}
$$

Reservation Systems

Reservation system with a single class of users

- Data intervals and reservation intervals alternate.
- All packets arriving during one data interval and preceding reservation interval wait until the next reservation interval to make a reservation ("gated" version)
- reservation intervals are iid and independent of arrivals and service time

$\mathbf{R}_{\boldsymbol{i}}$

$$
\begin{aligned}
& W_{i}=R_{i}+\sum_{j=i-N_{i}}^{i-1} X_{j}+V_{j} \\
\Rightarrow & W=R+\underbrace{N_{Q}}_{i \cdot W} \cdot E(X)+E(V)
\end{aligned}
$$

$\rho=\lambda \cdot E(X)$

$$
\Rightarrow W=\frac{R+E(V)}{1-\rho}
$$

R is the same as in $M / G / 1$ with vacations

The residual service time is the same as in the

 vacation case, so$$
W=\underbrace{\frac{\lambda\left(E\left(X^{2}\right)\right.}{2(1-\rho)}+\frac{E\left(V^{2}\right)}{2 E(V)}}_{M / \mathbf{G} / 1 \text { vacations }}+\frac{E(V)}{1-\rho}
$$

If all reservation intervals are of constant duration V,

$$
W=\frac{\lambda \cdot E\left(X^{2}\right)}{2(1-\rho)}+v \cdot\left(\frac{1}{2}+\frac{1}{1-\rho}\right)
$$

