M/M/1 system:

- Poisson arrivals
- Exponential service times
- Service times mutually independent and independent of arrival times

M/M/m system:

- Like $M / M / 1$, but now we have m servers

M/M/ ∞ system:

- servers
$M / M / m / m$ system:
- Like $M / M / m$, but customers arriving when all servers are busy are lost

Birth-death Markov chains

A birth-death Markov chain is a Markov chain with integers as states, and with transitions only between neighboring states (e.g. $M / M / 1, M / M / m, M / M / m / m$, $M / M / \infty)$.

Example: D/D/1 system (deterministic)
Assume interarrival times = 1
Assume service times $=\frac{1}{2}$

Arrivals occur at times $0,1,2, \ldots$.
Departure occur at times $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$.
A customer always find the system empty when it arrives.

$$
N=\frac{1}{2}
$$

Occupancy distribution upon arrival/departure

$p_{n}(t)=P_{r}(N(t)=n)-$ probability that there are n customers in the system at time t.
$p_{n}=\lim _{t \rightarrow \infty} p_{n}(t) \rightarrow$ steady-state probability that there are n customers in the system

Let
$a_{n}(t)=p_{r}\{N(t)=n \mid$ an arrival ocurred just after time $t\}$
$a_{n}=\lim _{t \rightarrow \infty} a_{n}(t) \rightarrow$ steady-state probability that an arriving customer finds n customers in the system
$d_{n}(t)=p_{r}\{N(t)=n \mid$ an departure ocurred just before tir $t\}$
$d_{n}=\lim _{t \rightarrow \infty} d_{n}(t) \rightarrow$ steady-state probability that an departing customer leaves n customers behind

Fact 1: under broad assumptions, $a_{n}=d_{n}$
Proof:

Intuitive reason: on any sample path, number of arrivals seeing state n is number of $n \rightarrow n+1$ transitions; this equals number of $n+1 \rightarrow n$ transitions $(\pm 1$, which is a number of departure leaving system in state n.

$$
\begin{aligned}
& \text { frequency of } n \rightarrow n+1 \text { transitions } \\
= & \text { frequency of } n+1 \rightarrow n \text { transitions }
\end{aligned}
$$

Fact 2: for Poisson arrivals, and service times that are independent of interarrival times.

$$
a_{n}=p_{n}\left(=d_{n}\right)
$$

Proof: let $A(t, t+\delta)$ be the event that an arrival occurs between time t and $t+\delta$

$$
a_{n}(t)=\lim _{\delta \rightarrow 0} P_{r}\{N(t)=n \mid A(t, t+\delta) \text { occured }\} \text { Bayes rule }
$$

$$
\begin{aligned}
\Rightarrow a_{n}(t) & =\lim _{i \rightarrow 0} \frac{P_{r}\{A(t, t+\delta) \mid N(t)=n\} \cdot P r\{N(t)=n\}}{\left.p_{r} A(t, t+\delta)\right\}} \\
& =P_{r}\{N(t)=n\}=p_{n}(t) \Rightarrow a_{n}=p_{1}
\end{aligned}
$$

i.e., in steady-state, "arrivals see steady-state probabilities".

M/G/1 queue

- Poisson arrivals with rate λ
- Service time follow an arbitrary distribution with given $E(X)=\frac{1}{\mu}$ and $E\left(X^{2}\right)$
- Service times are iid, and independent of arrivals

P-K formula

$$
W=\frac{\lambda \cdot E\left(X^{2}\right)}{2(1-\rho)}
$$

where $\rho=\lambda E(X)=\frac{\lambda}{\mu}$ (server utilization factor)
From Little's theorem: $N_{Q}=\lambda W, T=E(X)+W, N=\lambda T$
The proof of the P-K formula will use graphical arguments.

Example $1(M / M / 1)$

$$
E(X)=\frac{1}{\mu}, E\left(X^{2}\right)=\frac{2}{\mu^{2}}
$$

$$
\mathbf{P}-\mathbf{K} \Rightarrow W=\frac{\lambda\left(\frac{2}{\mu^{2}}\right)}{2(1-\rho)}=\frac{\rho}{\mu(1-\rho)}
$$

Example 2 ($M / D / 1$)
Service times are deterministic and equal to $E(X)=\frac{1}{\mu}$.

$$
\begin{aligned}
& E\left(X^{2}\right)=\operatorname{var}(X)+(E(X))^{2} \quad \operatorname{var}(X)=0 \\
& E\left(X^{2}\right)=(E(X))^{2}=\frac{1}{\mu^{2}} \\
& \stackrel{P-K}{\Rightarrow} W=\frac{\lambda\left(\frac{1}{\mu^{2}}\right)}{2(1-\rho)}=\frac{\rho}{2 \mu(1-\rho)}
\end{aligned}
$$

Note: M/D/1 has the smallest N, T, N_{Q}, W over all M/G/1 systems with the same $E(X)=\frac{1}{\mu}$

Proof of the P-K formula

arrival of i
departure of \boldsymbol{i}
\qquad

Abstract

$$
W_{i}=R_{i}+\sum_{j=i-N_{i}}^{i-1} X_{j}
$$

$$
\Rightarrow E\left(W_{i}\right)=E\left(R_{i}\right)+E\left(\sum_{j=i-N_{i}}^{i-1} X_{j},\right.
$$

$$
\Rightarrow E\left(W_{i}\right)=E\left(R_{i}\right)+E\left(N_{i}\right) E(X
$$

$i \rightarrow \infty$

$$
W=R+N_{Q} \cdot \frac{1}{\mu}
$$

$N_{Q}=\lambda W$

$$
\Rightarrow W=R+\lambda W \cdot \frac{1}{\mu}=R+\frac{\lambda}{\mu} W
$$

$\frac{\lambda}{\mu}=\rho$

$$
\Rightarrow W=\frac{R}{1-\rho}
$$

We will show that $R=\frac{\lambda E\left(X^{2}\right)}{2}$
$r(\tau)=$ residual time of customer in service

$\stackrel{\text { busy period }}{\substack{\text { idle } \\ \text { period }}}{ }_{\substack{\text { busy } \\ \text { period }}}$
$M(t)=$ number of service completions up to time t.
Time average of $r(\tau)$ up to time t

$$
=\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{t} \sum_{i=1}^{m(t)} \frac{1}{2} X_{i}^{2}=\frac{1}{2} \cdot \underbrace{\frac{M(t)}{t}}_{=\lambda} \cdot \underbrace{\frac{\sum_{i=1}^{m(t)} X_{i}^{2}}{M(t)}}_{=E\left(X^{2}\right)}
$$

$$
\stackrel{t \rightarrow \infty}{\Rightarrow} \quad R=\frac{\lambda E\left(X^{2}\right)}{2}
$$

Note: for stability $\rho=\lambda E(X)=\frac{\lambda}{\mu}<1$ and $E\left(X^{2}\right)<\alpha$

Example: delay analysis of a go back \mathbf{n} ARQ
Assume retransmissions happen only due to errors in forward channel.
$p=$ probability that a frames is received with errors. $X=$ effective service time of a packet (time between its first and last transmissions)

packets arrive at transmitter according to Poisson process of rate λ

$$
\begin{aligned}
& \xrightarrow{\lambda} \begin{array}{l}
\text { ARQ go back n } \\
\text { Poisson } \longrightarrow \boldsymbol{M} / \mathbf{G} / \mathbf{1}
\end{array} P(X=1+k n)=(1-p) \cdot p^{k} \\
& E(X)=\sum_{k=0}^{\infty}(1+k n)(1+p) \cdot p^{K}=\cdots=1+\frac{n p}{1-p} \\
& E\left(X^{2}\right)=\sum_{k=0}^{\infty}(1+k n)^{2}(1+p) \cdot p^{K}=\cdots=1+\frac{2 n p}{1-p}+\frac{n^{2}\left(p+p^{2}\right)}{(1-p)^{2}} \\
& \text { P-K: } W=\frac{\lambda E\left(X^{2}\right)}{2[1-\lambda E(X)]}, T=E(X)+W
\end{aligned}
$$

