M/M/1 system:

. Poisson arrivals
. Exponential service times
. Service times mutually independent and

Independent of arrival times
M/M/m system:
. Like M/M/1, but now we have m servers
M/M/x system:

servers

M/M/m/m system:

. Like M/M/m, but customers arriving when all

servers are busy are lost
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Birth-death Markov chains

A birth-death Markov chain is a Markov chain with
Integers as states, and with transitions only between
neighboring states (e.g. M/M/1, M/M/m, M/M/m/m,
M/M/oo ).

O 0 Q i Q j2 QO ik Q
OESOEBOE OSSO e
1 w2 U3 s
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Example: D/D/1 system (deterministic)

Assume interarrival times =1
Assume service times = -
customers in the system
A
1
0 1 >
Z 1 3 2 2 t

Arrivals occur at times 0,1,2,----.

Departure occur at times 3,3,2 ,-----

A customer always find the system empty when it
arrives.

N =23
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Occupancy distribution upon arrival/departure

pn(t) = P(N(t) = n) —probability that there are n
customers in the system at
timet.

Pn :{Lrpo pn(t) osteady-state probability that there
are n customers in the system

Let

an(t) =pA{N(t) =n|an arrival ocurred just after timet}

an :ItLrQ an(t) - steady-state probability that an
arriving customer finds n

customers in the system

dn(t) =p{N(t) =n |an departure ocurred just before tint }
dn :ItLrQ dn(t) - steady-state probability that an

departing customer leaves n
customers behind
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Fact 1: under broad assumptions,

Proof:
BpOEB S

Intuitive reason: on any sample path, number of

arrivals seeing state nis number of n-n+1
transitions; this equals number of
n+1-ntransitions (x1, which is a number of

departure leaving system in state n.

frequency of n-n+1transitions
= frequency of n+1 - n transitions
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Fact 2: for Poisson arrivals, and service times that

are independent of interarrival times.

an =pn(=dn,

Proof: let A(t,t +0) be the event that an arrival

occurs between time tand t+o

an(t) :M)l P{N(t)=n| A(t,t+0J) occured } Bayes rule

. P A1) N(t)=n}-Pr{N(t)=n}
= an(t) =lim )

=P{N(t) =n}= pn(t) = an =p

l.e., In steady-state, “arrivals see steady-state

probabilities”.
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M/G/1 queue

A
Poisson—| _ >

. Poisson arrivals with rate 4
. Service time follow an arbitrary distribution with
givenE(X) =+ and E(X?)

. Service times are iid, and independent of arrivals

P-K formula
_ ZE(X?)
W= 2(1-p)

where p = AE(X) = % (server utilization factor)
From Little’s theorem: Ng =AW, T =E(X)+W, N =AT
The proof of the P-K formula will use graphical

arguments.
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Example 1 (M/M/1)

E(X) =7, E(X?) =3

),
P-K =W =505 = za)
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Example 2 (M/D/1)

Service times are deterministic and equal to E(X) :%.

E(X?) =var (X)+(E(X))? var(X)=0
E(X?) = (E(X))? =z

R
 2(1-p) T 2u(1l-p)

P-K
=

Note: M/D/1 has the smallest N, T, Ng, W over all
M/G/1 systems with the same E(X) = 3
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Proof of the P-K formula

departure of j

arrival of j
X o ... X X
| l L =Ny L -2 T | .
—i .
R.F — time
I time for Ni customers
to be serverd X
W,

W, = Waiting time in the queue of the ith customer

Ri = Residual service time seen by the ith customer.
By this we mean that if customer jis already
being served when i arrives, Riis the remaining
time until customer j’s service time is complete.
If no customer is in service (i.e., the system is
empty when i arrives), then R;is zero

X; = service time of the ith customer
Ni= Number of customers found waiting in queue by

ith customer upon arrival i (assume FCFS, even
though not necessary
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departure of j

arrival of j
X . ... X X,
| l L_I-Nj |2 T | .
— .
R,/ —i time
I time for Ni customers
to be serverd X
Wi,
-1
Wi=Ri+ 2 X
J=I-N;

- EW) =E(R)+E( 5 X;
= E(W;) = E(R;) + E(N;)E(X

| > o0
W=R+Ng -7

NQ:}LW

S>W=R+/IW-%+=R+4W
A —
L=p

- R
=> W= 1-
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R = /1E(>2<2)

We will show that

f(T)= residual time of customer in service
a

{ [%3
0 «—> time 1
X1 X3 Xg Xmt)
" busy period +——
idle —_
period busy

period

M(t) = number of service completions up to time t.

Time average of r(z) up to timet
m(t)

My &

i=1
L] t L] M(t)
=4
- =E(X2)

m(t)
=1lo r@de=t X 3X¢=3

[—o0 R — _/1E(2X2)

=

Note: for stability p = AE(X) =% < 1 and E(X?) <«
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Example: delay analysis of a go back n ARQ

Assume retransmissions happen only due to errors

in forward channel.

p = probability that a frames is received with errors.

X = effective service time of a packet (time between
its first and last transmissions)

effective service effective service X5 X,
< time of packet 1 e time of packet 2 —ble >
112...ln|1]2]|...In*1] 2| 3 4...|n+3|}1J
error _ T error I error correct
final correct
transmission final
of packet 1 transmission

of packet 2

packets arrive at transmitter according to Poisson
process of rate 4

2 ARQ go back n
Poisson—s  M/G/1 —
P(X=1+kn)=(1-p)-p'
E(X) :k%—O:O (1+kn)(1+p)-pK :”.:1+1n__|c|)o
T 2np  n?(p+p?
E(X?) =X (1+kn)2(L+p)-pK=-- =1+ +5500
AE(X2)

P-K: W:m , T=EX)+W
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