The M/M/1 Queueing System

M (Poisson arrival process )/M (exponential service times) /1 (1 server)

Poisson—s| PA(Xp > X) = e

<4+—>
exponential E(xn) =%
with parameter U

Notation: /- /

Arrival process Service times  # of servers Max. # of

M: Poisson M: Exponential customers
D: Deterministic D: Deterministic in the system
G: General G: General

- We also assume that service times are mutually
independent and also independent of all interarrival
times.

. The server is always serving a customer if any

customer is in the system. Assume FCFS service to

be specific.




Poisson Process of Rate A

A Poisson process A(t) is a counting process.
For each t>0, A(t) is arandom variable denoting the
number of arrivals from 0tot.
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Number of arrivals in disjoint time intervals are

iIndependent.
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Number of arrivals in any interval of length 7 is
Poisson with parameter 4.1
(47)"

P{A(t+7)-A(t)=n}=e™**~—- ,n=0,1,---
E{A(t+7)—-A({t)} = A-7 A:arrival rate




Properties of Poisson process

Let t, =time of nth arrival
Tn = th+1 —th = Interarrival time

. P(tn>s)=P{A(th +s) = A(tn) =0} = e ™5
( Interarrival times are exponentially distributed with
parameter 4, mean % variance /117)

_ Plparttoe>t) o)
« P(thn>r+t|h>t) = P(tnxt)

= =M =P(1y2 1)

(memoryless)

. For any t, and any (small) o:

P{A(t+0)—-A(t)=0}=1-10+0(0)
P{A(t+0)-Al)=1}= A0 +0(0
P{A(t+0) - A(t) > 2} = 0(0)

where |im 00) _ 0
-0 0

These follow from definition:

e—/lé(/w)n
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P{A(t+0)—A(t) =n} =
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- If Aq(t), Aa(1),-- -, Ak(t) are independent Poisson
processes of rate 41,42, -+, Ak, then
A1(t) + Ax(t) + - - +Ak(t) Is a Poisson process of rate

}Ll+12+...+}w

A
42 — ¥,
=
Ak (see also Ex.3.10c)
Ap
random
A independent

selection

1-p *4(1-p)
If each arrival of a Poisson process is independently
sent to system 1 with prob. p and system 2 with prob.

1-p, the arrivals to each system are Poisson and

Independent.(see also Ex.3.11a)
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Situation at time t

Starting at a particular time t, the subsequent arrivals
do not depend on what has happened in the past, and
the subsequent departures depend only on the
number N(f) of customers in the system at time ¢.

In particular, since service time exponential, it makes
no difference, how long the current customer has
been in service; the remaining time until departure is
still exponential.

Future # of customers in the system depends on past
numbers only through the present number N(t).
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We focus at times 0,5,25,35,----- KO, v e (0 small).

Ny €' N(ko) =# of customers in the system at time k.

Pi=P{Nk =j| N =1i)(transition probabilities)

Poo =1 =70 +0(5) (no arrival)

Pi=1-70-uo+0(), i>1 (no arrival/departure)

Pii1 =0+0(), i>0 (one arrival)

Pii-1 =ud +0(5), i>0 (one departure)

[Note: for any state n> 1, the server is busy and
probability of departure is P-(X <) =1-e7° =ud +0(9)]
Pij=0(), j#1,i+1,i—1(i.e. the probability of multiple

arrivals/departures is negligible.)
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Let pn be the “steady-state” probability that the
system is in state n. [ i.e. pj :ItLrpo P(N(t) =n)

Note: over an arbitrarily long period of time, the
number of transitions from n to n+17 is the same as
from n+71 to n (plus or minus one).

Thus for any n:

Pn-140 = Pniid = Pn = (E)Pn-1 = (1) 2Pn-2 =+ = (£)"pc

Define
p= % (“utilization factor”)

= Pn=p"Po, N=1,2,.---




To find po:

,gopnﬂ :>n§O,0”Po:1 =>Po-117p=1 =po=1-y¢

=pn=(1-p)-p", forn>0 p=4£<-

p = Probability that the system has at least one
customer (=1 —po)
= Probability server is busy

The expected number N of customers in the system is




Number in the system blows
upasp—>1,N-x;i.e. as
arrival rate 4 approaches
service rate u.
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From Little’s theorem, average customer delay 7 is

N _ /P — 1
T=0 =%~ s A<H

Average time in queue Wis

_N_1_1 _1__7_
W_/l K= u=4 KT ou-)

Average number of customers in queue N is

)2 N server
NQ:}LW:E < [s
N
< Q 4
< W "%’
< 4
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Example 1 (Scaling of an M/M/1 queue)
N=+5,pn=(1-p)p" forn>0,Nq =1
where p =+
If one scales the arrival rate 1 and the service rate «,
by a constant factor k, N, No, and p, are unchanged
7= W=5

System delay 7 and queueing delay W vary as 1;
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Example 2 (statistical multiplexing verses FDM)

Consider 100 sessions with Poisson arrivals of
combined rate 4 and exponentially distributed packet
lengths sharing a link with service rate

u packets/sec.

Statistical multiplexing

P Service rate u T=-L
~ u-l

Frequency Division Multiplexing (FDM)
If FDM is used, each session has rate 55 and “sees”

service rate 155

Capacity divided
into 100 equal portions

|~
] |‘||!

: M
'< service rate 100

per session
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MIMIm queue

Poisson arrivals of rate /1
m servers, each exponentially distributed with rate «
A

Poisson — %

servers

. Given n customers in the system, n<m, a new
arrival will occur in an increment o with probability
/0. A departure will occur with probability nuo.

. For n>m a departure occurs with probability muo.

1-76 1-20-ud 1-46-2u6 1- M—(m—l),ué 1-/0-mud 1=70—mus
G-O‘O SEBOWEB et
uo 200 (m-Luo  muo muo muo

APn-1 =NuPn, N<M
APn-1 =Mupn, N>m
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If n<m:

Pn = (nﬂ)pn 1= nenpzPn-2 = e = Po
If n>m:
_ . _ . A _ A
Pn = ®z)Pn-1 = (Mz)?Pr-2 =+ = (@) " ""Pm = mrmmgr

n
po™ n<m

Let 'D_mﬂ <1:>pn—{p0M’ n>m

x _ _ (m/))n (mp)™ -4
nz‘o ph=1=---po= [ Z n! m!(l—p)]

The probability an arriving customer will find all
servers busy (and will have to wait) is

P (all servers busy) =Pq=2 pn=:--= F;ﬁ!((r:/ji))

Erlang C formulajused in telephony
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The expected number of customers in queue is

o0 o0 mmpm+n po(mp)m o0
No=2 n =2 Npo - = np"
Q nz‘o P nz::O Po-—m m! nz::O P
P
(1-p)2
— P No _ p _
=Pq 15, = P, =15 (p = i)
Waiting time :

_No _ pPq
W=-"=702,

Total time in system:

T

1
S
+

=)=
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M/M/m/m Queue

Customers arriving when all m servers busy are
thrown away, never to return.

1-20 1 =76 — ud 1-20-M=-2ud 1-26—-(M-Lud 1-70-mud
D 0 QW O 6w ) 6w O
OEBOGEES C 49D

ud 240 (m —1)uo muo

ﬂp,”—nﬂpn, n=12.--m
pn_n| (,U)n —J 21...1m
Zop”:1_’p0:[2 (,M)n |] -

Probability that a customer finds all servers busy is

(i)m

ml

()”
e

Pm="

Erlang B formula|N, T less than for M/M/m but not all
customers get served)

If one uses these models for session arrivals in a voice
network, one sees that customer behavior is somewhat

between MI/M/m and M/M/m/m behavior—some customers go

away if they can’t get through and some keep trying.
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Example: Assume m=100 sessions sharing a link.
Assume 100 frequency bands, but packets are
assigned to any available band. This is an M/M/100.

, [statistical multiplexing using m channels]

Ty 12
100 156
10— — _ 100 , PQ
: To =5+
j —" -1—'
100

100 subchannels with service -~ each

Under light load is almost the same as FDM

[FDM]
y) 100
100 —_ ’
M
A - 100
00— — T, = 100
—— 2 — 1=
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Under heavy load delay is almost the same as
statistical multiplexing

[statistical multiplexing over the entire channel]
A

100 ~

J —> —_1

100 > 4 Ts=25
4 one channel with service rate
100~ u

Jsmall: T1 T2~ 100T., Alarge (A=~ u) : T1 = T3 :1L02(
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M/M/ «queue.

As in M/M/m, but with m = servers.

Expressions can be found by taking the limit m - o« in
the M/M/m expressions:

Pn = %(%)npc
po=[1+3 (7)"Hl "t =e
e‘/il A
Pn =" ()"
Average # in the system N= %(:éo npn)

— N _
T=0=

=

17




