## Delay Models and Queueing

The inputs to networks are unpredictable and best modeled probabilistically.

Queueing theory (customers with random service needs arrive at random times) is an appropriate model).

## Little's Theorem

## Under very broad conditions:

$\left(\begin{array}{l}\text { Average number } \\ \text { of customers } \\ \text { in the system }\end{array}\right)=\left(\begin{array}{l}\text { The rate } \\ \text { costomers } \\ \text { arrive at } \\ \text { the system }\end{array}\right) \times\left(\begin{array}{l}\text { Average time } \\ \text { a customer } \\ \text { spend in } \\ \text { the system }\end{array}\right)$

$$
N \quad=\quad \lambda \quad . \quad T
$$

The "system" could be a network, a queue, a queue plus a server, a server alone, a network of queues, etc..

## Proof of Little's Theorem

Let:
$a(\tau)=$ number of arrivals from time 0 to $\tau$
$T_{i}=$ time spent in system by $i$ th arrival
$\beta(\tau)=$ number of departures from time 0 to $\tau$
Assume that the system is empty at time 0.

(The total time customers $0,1, \cdots \cdots a(t)$ spend in the system)

Let:
$N(\tau)=$ number of customers in system at time $\tau$ then $N(\tau)=\alpha(\tau)-\beta(\tau)$


Shaded area $=\int_{0}^{t} N(\tau) d \tau$

Let $N_{t}$ be the average number of customers from time 0 to $t$.

$$
\begin{aligned}
& N_{t}=\frac{\int_{0}^{t} N(\tau) d \tau}{t} \\
& N_{t}=\frac{1}{t} \sum_{i=1}^{a(t)} T_{i}=\frac{a(t)}{t} \cdot \frac{\sum_{i=1}^{a(t)} T_{i}}{a(t)}
\end{aligned}
$$

The average arrival rate from 0 to $t$ as

$$
\lambda_{t}=\frac{a(t)}{t}
$$

and the average time a customer is in the system as

$$
T_{t}=\frac{\sum_{i=1}^{a(t)} T_{i}}{a(t)}
$$

Thus:

$$
N_{t}=\lambda_{t} \cdot T_{t}
$$

Assume that all three of these approach a limit (with probability 1) as $t \rightarrow \infty$.

$$
\begin{aligned}
& N=\lim _{t \rightarrow \infty} N_{t} \\
& \lambda=\lim _{t \rightarrow \infty} \lambda_{t} \\
& T=\lim _{t \rightarrow \infty} T_{t}
\end{aligned}
$$

then $N=\lambda \cdot T$

$$
\begin{aligned}
& a(t) \neq \beta(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { time } \\
& \sum_{i=1}^{\beta(t)} T_{i} \leq \int_{0}^{t} \mathrm{~N}(\tau) d \tau \leq \sum_{i=1}^{a(t)} T_{i} \\
& \frac{\sum_{i=1}^{\beta(t)} T_{i}}{t}=\frac{\beta(t)}{t} \cdot \frac{\sum_{i=1}^{\beta(t)} T_{i}}{\beta(t)} \leq \frac{\int_{0}^{t} N(\tau) d \tau}{t} \leq \frac{\sum_{i=1}^{a(t)} T_{i}}{t}=\frac{a(t)}{t} \cdot \frac{\sum_{i=1}^{a(t)} T_{i}}{a(t)} \\
& t \rightarrow \infty=\lambda T=\lambda T
\end{aligned}
$$

## General Queueing Discipline


$\sum_{i=1}^{\beta(t)} T_{i} \leq$ shaded area $=\int_{0}^{t} N(\tau) d \tau \leq \sum_{i=1}^{a(t)} T$

Example:

$$
N=\lambda \cdot T
$$

Fast food restaurant (small $\boldsymbol{T}$ ) require small dining are (small $\boldsymbol{M}$ ) for a given $\lambda$.

On a rainy day, people drive more slowly ( $T$ is large) and thus $N$ is larger .

Example 3.1: Application of Little's Theorem

$$
N \quad=\quad \lambda \quad \cdot \quad T
$$

The "system" could be a queue, queue plus serve, network, server alone, etc..
e.g.

$\mathrm{T}=$ average delay in queue+server
$W=$ average waiting time in queue
$X=$ average service time
The average number of customers in queue or server

$$
N=\lambda \cdot T
$$

The average number of customers in queue alone

$$
Q=\lambda \cdot W
$$

The average of customers number in server alone

$$
\rho=\lambda \cdot X
$$

Example 3.2:
$\lambda_{i}$ : Arrival rate of source packets at node $i$.
$N_{i}$ : Average number of packets in the queues of node $i$.


Average delay per packet

$$
T=\frac{\sum_{i=1}^{n} N_{i}}{\sum_{i=1}^{n} \lambda_{i}}
$$

## Example 3.3:

A packet arrives every $K$ seconds.

- Transmission time: $a K$ seconds.
- Processing time: $P$ seconds.


The average time spent in the system

$$
T=a K+F
$$

The average number of packets in the system

$$
N=\lambda T=a+\frac{P}{K}
$$

$N(t)$ does not converge to any value, but $N$ does

An example where $N_{\tau}$ does not converge to any value.


## Components of node delay



Processing: time from end of packet reception to assignment to queue.

Queueing: time in queue until beginning of transmission (i.e. until "service" in queue jargon ).

Transmission: message length/link rate.
Propagation: "flight time" of a bit.

Example 3.4: Window flow control

$$
\lambda \cdot T=N \leq r
$$

$n$ : with go back $n$ are in the network at most $n$ packets


If acknowledgements are received rightaway

$$
\lambda \cdot T=N=n \approx \lambda_{\max } \cdot 7 \text { (when heavily loaded) }
$$

window size

$$
n \uparrow \Rightarrow \text { delay } T \uparrow
$$

If delays for packets and acknowledgements are similar

$$
\begin{aligned}
& N \approx \frac{n}{2} \approx \lambda_{\max } \cdot T \text { ( heavy traffic) } \\
& n \uparrow \Rightarrow T \uparrow
\end{aligned}
$$

Example 3.5:
A system with $N$ customers and $K$ servers

- Average service time $=\bar{X}$
- $N \geq K, N, K$ are constant

The system is closed: there is a new customer arrives whenever a customer departs.

The arrival rate $\lambda$ satisfies

$$
K=\lambda \bar{x}
$$

The average time a customer stay in the system

$$
T=\frac{N}{\lambda}=\frac{N \bar{X}}{K}
$$

Example 3.6:
A transmission line serves $m$ packet streams (users) in round robin cycles.

- Arrival rate $\lambda_{i}$ for user $i$
- Transmission time $\bar{X}$
- Overhead $A_{i}$ (Precedes the transmission)

Average cycle length $L=$ ?
Average number of packets on the transmission line

$$
N=\sum_{i=1}^{m} \lambda_{i} \bar{X}_{i} \leq 1
$$

The fraction of time the line is idle

$$
\begin{gathered}
\frac{\sum_{i=1}^{m} A_{i}}{L}=1-N=1-\sum_{i=1}^{m} \lambda_{i} \bar{X}_{i} \\
L=\frac{\sum_{i=1}^{m} A_{i}}{1-\sum_{i=1}^{m} \lambda_{i} \bar{X}_{i}}
\end{gathered}
$$

Example 3.7: (time sharing computer system)


T: average time a user spends in the system

$$
T=R+C
$$

$D$ : average delay between time at which job is submitted at the CPU, and the time its execution is completed

$$
R+P \leq T \leq R+N \cdot P
$$

$$
\begin{aligned}
& \Rightarrow \frac{N}{R+N \cdot P} \leq \lambda \leq \frac{N}{R+F} \\
& \text { also } \\
& \Rightarrow \frac{N}{R+N \cdot P} \leq \lambda \leq \min \left\{\frac{1}{P}, \frac{N}{R+P}\right\}
\end{aligned}
$$



Number of terminals $\mathbf{N}$

