Delay Models and Queueing

The inputs to networks are unpredictable and best modeled probabilistically.

Queueing theory (customers with random service needs arrive at random times) is an appropriate model).

The "system" could be a network, a queue, a queue plus a server, a server alone, a network of queues, etc..

Proof of Little's Theorem

Let:

 $a(\tau)$ = number of arrivals from time 0 to τ

 T_i = time spent in system by *i* th arrival

 $\beta(\tau)$ = number of departures from time 0 to τ

Assume that the system is empty at time 0.

Let: $N(\tau) =$ number of customers in system at time τ then $N(\tau) = a(\tau) - \beta(\tau)$

Let N_t be the average number of customers from time 0 to t.

$$N_t = \frac{\int_0^t N(\tau) d\tau}{t}$$
$$N_t = \frac{1}{t} \sum_{i=1}^{a(t)} T_i = \frac{a(t)}{t} \cdot \frac{\sum_{i=1}^{a(t)} T_i}{a(t)}$$

The average arrival rate from 0 to t as

$$\lambda_t = \frac{a(t)}{t}$$

and the average time a customer is in the system as

$$T_t = \frac{\sum_{i=1}^{a(t)} T_i}{a(t)}$$

Thus:

 $N_t = \lambda_t \cdot T_i$

Assume that all three of these approach a limit (with probability 1) as $t \rightarrow \infty$.

$$N = \lim_{t \to \infty} N_t$$
$$\lambda = \lim_{t \to \infty} \lambda_t$$
$$T = \lim_{t \to \infty} T_t$$
$$hen \quad N = \lambda \cdot T$$

$$\sum_{i=1}^{\beta(t)} T_i \leq \text{shaded area} = \int_0^t N(\tau) d\tau \leq \sum_{i=1}^{a(t)} T$$

Example:

 $N = \lambda \cdot T$

Fast food restaurant (small *T*) require small dining are (small *N*) for a given λ .

On a rainy day, people drive more slowly (*T* is large) and thus *N* is larger .

Example 3.1: Application of Little's Theorem

 $N = \lambda \cdot T$

The "system" could be a queue, queue plus serve, network, server alone, etc..

e.g.

The average number of customers in queue or server $N = \lambda \cdot T$ The average number of customers in queue alone $Q = \lambda \cdot W$ The average of customers number in server alone $\rho = \lambda \cdot X$

Example 3.2:

 λ_i : Arrival rate of source packets at node *i*.

 N_i : Average number of packets in the queues of node *i*.

Average delay per packet

$$T = \frac{\sum_{i=1}^{n} N_i}{\sum_{i=1}^{n} \lambda_i}$$

Example 3.3:

A packet arrives every *K* seconds.

- Transmission time: *aK* seconds.
- Processing time: *P* seconds.

Example 3.4: Window flow control

 $\lambda \cdot T = N \leq n$

n: with go back *n* are in the network at most *n* packets

 $\lambda \leq \lambda \max$

If acknowledgements are received rightaway

 $\lambda \cdot T = N = n \approx \lambda_{\text{max}} \cdot 7$ (when heavily loaded)

window size

 $n \uparrow \Rightarrow \text{delay } T \uparrow$

If delays for packets and acknowledgements are similar

$$N \approx \frac{n}{2} \approx \lambda_{\max} \cdot T$$
 (heavy traffic)

 $n \uparrow \Rightarrow T \uparrow$

Example 3.5:

A system with *N* customers and *K* servers

- Average service time = \overline{X}
- $N \ge K$, N, K are constant

The system is closed: there is a new customer arrives whenever a customer departs.

The arrival rate λ satisfies

$$K = \lambda \overline{X}$$

The average time a customer stay in the system

$$T = \frac{N}{\lambda} = \frac{N\overline{X}}{K}$$

Example 3.6:

A transmission line serves *m* packet streams (users) in round robin cycles.

- Arrival rate λ_i for user *i*
- Transmission time X_i
- Overhead A_i (Precedes the transmission)

Average cycle length *L* = ?

Average number of packets on the transmission line

$$N = \sum_{i=1}^{m} \lambda_i \overline{X_i} \leq 1$$

The fraction of time the line is idle

$$\frac{\sum_{i=1}^{m} A_{i}}{L} = 1 - N = 1 - \sum_{i=1}^{m} \lambda_{i} \overline{X}_{i}$$

$$L = \frac{\sum_{i=1}^{m} A_i}{1 - \sum_{i=1}^{m} \lambda_i \overline{X_i}}$$

$$\Rightarrow \frac{N}{R+N\cdot P} \le \lambda \le \frac{N}{R+F}$$
also
$$\lambda \le \frac{1}{P}$$

$$\Rightarrow \frac{N}{R+N\cdot P} \le \lambda \le \min\{\frac{1}{P}, \frac{N}{R+P}\}$$

