Exercise for the stop and wait protocol

1. Write down the numbers of packets transmitted.

- 2. Write down the state (SN of A mod 2, RN of B mod
- 2) of the system for traffic from node A to node B.

Stop and wait protocol

Request Numbers

- Instead of sending "ACK" or "NAK", the receiver sends the number of the packet currently awaited.
- Sequence numbers and request numbers can be sent modulo 2 (because packets n & n+2 cannot be simultaneously in the system.)

More efficient retransmission protocols

- 1) ARPANET ARQ
- 2) Go back n
- 3) Selective repeat

ARPANET ARQ

- Packets are assigned to one of 8 virtual channels which are served in a round-robin order.
- If a virtual channel's turn comes before an ACK for that virtual channel is received, the packet is resent.

ARPANET ARQ

3 virtual channels A,B,C

Go back n

- Transmitter A sends packets sequentially.
 (SN= sequence number)
- Receiver B acknowledges by sending the packet number next awaited. (RN= request number)
- Receiver accepts packets <u>in order</u> .(if RN ≠ SN, the packet is discarded)
- The transmitter can send any packet within the window [SN_{min} , SN_{min} +n-1].

last RN received

 When the end of the window is reached, transmitter A retransmits packet SN_{min}, (a) after it times out, or (b) immediately

Example 1: (no retransmissions required due to feedback errors)

Example 2: (retransmissions because of errors for go back 4)

Example 3: (retransmissions due to feedback errors for go back n)

Example 4: (effect of long frames in reverse direction)

 Long frames in the feedback direction slow down ACKs and may cause a transmitter with short frames to wait or (if time-out expires) to go back.

Stop and wait protocol

Packet 1 is <u>not</u> retransmitted right away.

Redundant packets are transmitted, if retransmitted right away.

Correctness of go back n with modulus m >n

SN and RN are <u>sent modulo m</u>, where m>n. Standard choices are m=8 and m=128 (for satellite channels).

$$SN_{\min}(t_1) \leq SN \leq SN_{\min}(t_1) + n - 1$$

$$SN_{min}(t_1) = i = RN(t_0) \le RN(t_2) \le SN_{min}(t_1) + n$$

$$|SN-RN(t_{2})| \leq n$$

Correctness proof continued

consider now numbering mod m

Let $rn = RN \mod m$ $sn_{min} = SN_{min} \mod m$ $sn = SN \mod m$

Old rules	Modified rules
the receiver accepts a packet when $SN = RN(t_2)$	the receiver accepts a packet when $sn = m(t_2)$
at transmitter, if $RN \neq SN_{min}$ then set $SN_{min} = RN$	at transmitter, if $m \neq sn_{min}$ then set $sn_{min} = m$

Comments on go back n

 Using 3 bits for SN and RN may be too restrictive, since n ≤ 7.

If frames one way are more than three times those the other way, retransmissions are common.

- Putting RN in frame trailer would ease the problem of delayed ACKs.
- Sending RN in short supervisory frames is another solution.
- Sending explicit NAKs when errors are received would also improve efficiency.

Selective repeat ARQ

Efficiency of go back n can be increased by accepting packets out of order (this requires memory at the receiver)

- An explicit NAK can request retransmission of just one packet.
- Buffer size should be at least as large as the number of packets transmitted in a roundtrip delay.
- Modulus m used should be $m \ge 2n$.

Efficiency

D = probability of frame received with error.

 β = expected # of frames per rountrip delay interval.

 η = expected # of frames sent per accepted packet.

For ideal selective repeat transmitter goes back only

on an error
$$\eta = 1 - p + p(1 + \eta)$$

efficiency
$$\frac{1}{\eta} \le 1 - \rho$$

For ideal go back n,

$$\eta = 1 - p + p(1 + \beta + \eta)$$

$$\frac{1}{\eta} \le \frac{1 - p}{1 + p\beta}$$

<u>Note</u>: typical error rates are <0.0001; selective repeat does not gain much in efficiency unless there are many frames in a roundtrip delay (e.g. satellite communications, optical fiber networks, etc..).

Selective repeat ARQ with $n=2\beta+2$ and receiver storage for $\beta+1$ packets.

Variability of delay is reduced