
Reversibility

Fact: the output of an M/M/1 (or M/M/m, M/M/ )�

         queue with arrival rate  is a Poisson                   �

          Process of rate . (Burke’s Thm) �

Follows from reversibility:

A Markov chain has the property that

   P [future | present, past] = P [ future | present]

i.e., conditional on the present state, futures states

and past states are independent.

Thus

  P [past | present, future] = P [ past | present] 

   P[Xn−1 = j Xn = i,Xn+1 = i2, ....] = P[Xn−1 = j Xn = i] def= Pij
�

The state sequence, run backward in time, in steady

state, is also a Markov chain
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          Pij
� =P[Xn−1 = j Xn = i] �

          Pij
� =

Pjipj
pi = P[Xn=i | Xn−1=j ]P[Xn−1=j]

P[Xn=i]

      transition probabilities for reverse chain

A Markov chain is reversible if Pij
� = Pij

[All birth-death processes are reversible, since
piPij = pjPji]

       P[Xn−1 = j Xn = i,Xn+1 = i1, ....,Xn+k = ik

    = P[ Xn−1=j,Xn=i,Xn+1=i1,....,Xn+k=ik]
P[ Xn=i,Xn+1=i1,....,Xn+k=ik]

    =
P[ Xn−1=j,Xn=i]P[Xn+1=i,....,Xn+k=ik | Xni=j,Xn=i]

P[Xn=i]P[ Xn+1=i1,....,Xn+k=ik | Xn=i]

    = P[ Xn−1=j,Xn=i]
P[Xn=i]

    = P[ Xn−1=j]P[Xn=i | Xn−1=j]
P[Xn=i]

    =
pjPji

pi
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Since the backward process is statistically the same as the forward process,
and the arrival process in the forward system is Poisson, the arrival process
in the reverse system is also Poisson.
Since the arrivals of the reverse system corresponds to the departures of
the forward system, the departure process of the forward system is
Poisson.
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Number of arrivals

T
t

a1 a3a2
Number of departures

T
t

d1 d3d2
Number in the  system

T
t

d1 d3d2a1 a3a2

Number of arrivals

TT-d 1T-d3 T-d2
Number of departures

TT-a 1T-a3 T-a2Number in the system

TT-a 1T-a3 T-a2T-d 1T-d3 T-d2

(a)

(b)



Customer departures prior to time t in the forward

system become customer arrivals after time t in the

reversed system

Also the state of the system is independent of past

departures (this is the second part of Burke’s Thm)

e.g.

    9        

���������� ��
�� ��


� �� ������� �������

�

���
���� �����


� �� �������� �������

�

�
�� �
����
�� 
� ��

������� �������

�
�� �
����
�� 
� ��

������� �������

�

������� ������������

���� ����������� �	 ���
�����
����� �� �

� � �	 �����������



Note:

Conditional on the system being nonempty, the

output has exponentially distributed interdepartures

at rate  � > �.

Conditional on the system being empty, the system

has no output.

Thus it is plausible that the unconditional output is

Poisson, and reversibility shows it.
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Networks of queues

There are different of carrying over single queue
results:

Example 1:

Example 2:
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Effect of long packets

Arrivals at subsequent queue between become
bursty (like many cars following behind a slow truck
in a highway)

A long packet will typically wait less time at the
second queue than short packets will.
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Analysis using Kleinrock’s independence
approximating assumption

n traffic streams with rates Poisson.x1,x2, ..., xn,
 service rate on (i,j), exponential.� ij :
                      � ij = � xs
         all packet stream s
           crossing link (i,j)

Assume:
a) no feedback
b) Kleinrock’s assumption 

Then each queue behaves
like an M/M/1 queue:
          
P(nij customers in queue (i, j) ) = (1 − � ij)� ij

nij ,� ij =
� i
� i

Average # of customers in queue or in service at link (i,j) :
     Nij =

� ij

1−� ij
, Tij = 1

� ij−� ij

Tatol # of customers in the network:
     
       N =

(i,j)
�

� ij

1−� ij
, T = N

s�
xs

Note: for datagram,                  � ij = � xs � fij(s)
                                                   all packet stream s

                                                                   crossing link (i,j)

   where = fraction of streams s packets that use (i,j)fij(s)
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Example:

Assume that the service times of packets at queue 1

and queue 2, are independent and independent of

the arrival process.

Under this approximating assumption the second

queue is also M/M/1

queue 1 : P(Xn = i) = �1
i

� (1 − �1) , �1 = �
�1

queue 1 : P(Yn = j) = �2
j

� (1 − �2) , �2 = �
�2

under Kleinrock’s approximation

P(Xn = i,Yn = j) = �1
i

� (1 −�1) � �2
j
� (1 − �2)
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Proof:

� The state X of queue 1 is independent of past

departures (Burke’s Thm)

� The state Y of queue 2 is determined by past

departures from queue 1 and by service times in

queue 2.

� assuming service times in queue 2 are

independent of queue 1 service times (Kleinrock’s

approximation), the state Y of queue 2 is

independent of X.

So    
P(Xn = i, Yn = j) = P(Xn = i) � P(Yn = j) = �1

i
� (1 −�1) � �2

j
� (1 −�2)

Note:

Independence is by no means trivial (we used             

 Burke’s theorem in addition to Kleinrock’s                  

  assumption)
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This can be generalized to network with no feedback

if input streams are independent and output are split

independently.

Ex.

However, in practice:

1) Different sessions take different paths, so                

     departures are not split independently.

2) service time of a packet depends on its length,       

     which does not change from queue to queue.
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Kleinrock’s assumption tends to be fairly good in

dense networks, with queues receiving traffic from

many other queues, and where no metering is used.

Then correlation between interarrival times and

packet lengths decreases.
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Example of metering

Randomization: flip a coin to assign a packet to a
queue. Then we have 2 independent M/M/1 queues:

                           TR = 1
�− �

2
= 2

2�−�

         (consistent with Kleirock’s Approximation)

Metering: assign packet to queue that currently has
smallest total backlog (and will therefore empty first)

This is equivalent to an M/M/2 queue

                      TM = 2
(2�−�)(1+�) , � = �

2�

Metering is popular in datagram nets, and it tends to
degrade the accuracy of  Kleinrock’s approximation.
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Examples of feedback:

For systems with feedback, arrivals at a queue are
not Poisson.
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Jackson Networks

A Jackson networks is a network with K queue, j=1,
2, ...,K
� Independent exogenous Poisson inputs
� Exponentially distributed services
� independent routing of packets
� service times of a packet at different nodes are

independent. (Kleinrock’s assumption)

 = exogenous input rate at node jrj

 = service rate at queue j� j

 = probability that a packet leaving node i goes to node jPij

        (with probability  it leaves the network)1 −
K

j=1
� Pi,j

 = combined rate at node � j j (< � j)
� j = rj +

K

i=1
� �k Pij

[� j ’s are uniquely determined from rj ’s and Pij ’s ]
 = # of customers at queue jnj

 combined state of the systemn = (n1,n2, ..., nk) :
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 Jackson’s Thm:

                 P( n ) =
k

j=1
� Pj(nj) , Pj(nj) = (1 −� j)� j

nj , � j=
� j
� j

i.e.,
(a) the state of queue j (at a given time in steady          
    state) is independent of the states of all other          
    queue at that given time
(b) the state of a queue is given by the M/M/1               
      formula

Jackson’s theorem is not valid for data networks  
because of 

(1) The session routing
(2) The fact that the service time of a packet at a          
     queue depends on its length, which does not         
     change from queue to queue

It is a reasonable approximation if queue receives
from many streams.
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Example: Computer system with feedback loop for     
                I/O

  

         �1 = �
p , �1 = �

p�1

         �2 = �(1−p)
p , �2 = �(1−p)

p�2

 P(n1,n2) = (1 − �1)�1
n1(1 − �2)�2

n2
� from Jackson’s Thm

 : job in CPU, : job in I/On1 n2

      N1 = �1

1−�1
, N2 = �2

1−�2

      N = N1 + N2 = �1

1−�1
+ �2

1−�2
, T = N

� = �1

�(1−�1) + �2

�(1−�2)

Note: neither the CPU nor the I/O system is actually    
         M/M/1        

    22        

�

�

�������
���

�	


����������

����������




