Multiuser Reservation System

Consider system with m incoming streams, each Poisson with rate $\frac{\lambda}{m}$, service time X_{n} are iid with $E(X)=\frac{1}{\mu}, E\left(X^{2}\right)$ known, and independent of arrivals.

Server serves all packets from stream 0 , then all from stream $1, \ldots$. , then all from $m-1$, then all from 0 , etc..

There is a reservation interval of duration V_{i} before transmission of packets from stream i.

Gated service: all stream i arrivals during reservation or service interval for i are queued until the next stream i service interval.

Partially gated service: all stream i arrivals during reservation period for i get transmitted, but arrivals during service interval for i are queued for the next stream i interval.

Exhaustive service: all stream i arrivals while the server is serving i get transmitted in that service interval.

Transmission interval of user 1

Arrival interval for user 1 in an exhaustive system

Arrival interval for user 1 in a partially gated system
Arrival interval for user 1 in a gated system
Packets arriving in the arrival shown are transmitted in the transmission interval shown

Assume exhaustive service:

$$
W_{i}=R_{i}+\sum_{j=i-N_{i}}^{i-1} X_{j}+Y_{i},
$$

where $Y_{i s}$ is the duration of all the whole reservation intervals during which packet i must wait before being transmitted.

$$
R=\frac{\lambda \overline{X^{2}}}{2}+\frac{(1-\rho) \sum_{l=0}^{m-1} \overline{V_{l}^{2}}}{2 \sum_{l=0}^{m-1} \bar{V}_{l}}
$$

From Little's theorem (even though service is not FCFS)

$$
E\left(N_{i}\right)=\lambda \cdot E\left(W_{i},\right.
$$

So $W=\frac{R+Y}{1-\rho}$

$$
\begin{aligned}
& Y=\frac{\rho \bar{V}(m-1)}{2}+\frac{m \bar{V}(1-\rho)}{2}-\frac{(1-\rho) \sum_{l=0}^{m-1} \bar{V}_{l}^{2}}{2 m \bar{V}}=\frac{\bar{V}(m-\rho)}{2}-\frac{(1-\rho) \sum_{l=0}^{m-1} \bar{V}_{l}^{2}}{2 m \bar{V}} \\
& W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\bar{V}(m-\rho)}{2(1-\rho)}+\frac{\sigma_{V}^{2}}{2 \bar{V}} \quad \text { where } \sigma_{V}^{2}=\frac{\sum_{l=0}^{m-1}\left(\bar{V}_{l}^{2}-\bar{V}_{l}^{2}\right)}{m}
\end{aligned}
$$

To calculate Y for an exhaustive system

$a_{l j}=E\left\{Y_{i}\right.$ packet i arrives in user /'s reservation or data interval and belongs to user $(1+j) \bmod m$ \}
$\alpha_{l j}=\left\{\begin{array}{l}0, j=0 \\ \bar{V}_{(1+1) \bmod m+\cdots \cdots}+\bar{V}_{(t+) \bmod m,}>0\end{array}\right.$
Packet i belongs to any user with equal probability $\frac{1}{m}$ $E\left\{Y_{i} \mid\right.$ packet i arrives in user /'s reservation or de interval \}

$$
=\frac{1}{m} \sum_{j=1}^{m-1} a_{l j}=\sum_{k=1}^{m-1} \frac{m-j}{m} \bar{V}_{(\nmid)) \bmod m}
$$

A packet will arrive during user /'s data interval with probability $\frac{\rho}{m}$, and during user /'s reservation interval with probability $\underset{\substack{(1-\rho) \bar{V}_{1} \\ \sum_{k=1}^{2-1} \\ \sum_{0}}}{ }$.
$i \rightarrow \infty$

$$
\begin{aligned}
& Y=\sum_{k=0}^{m-1}\left\{\left[\frac{\rho}{m}+\frac{(1-\rho) \bar{V}_{1}}{\sum_{k=0}^{m-1} \bar{V}_{k}}\right] \sum_{j=1}^{m-1} \frac{m-j}{m} \bar{V}_{(+1) \bmod m}\right\} \\
& =\frac{\rho}{m} \sum_{j=1}^{m-1} \frac{m-j}{m}\left(\sum_{k=0}^{m-1} \bar{V}_{1}\right)+\frac{(1-\rho) \bar{V}_{1}}{\sum_{k=0}^{m-1} \bar{V}_{k}} \sum_{k=0}^{m-1} \sum_{j=1}^{m-1} \frac{m-j}{m} \bar{V}_{l} \bar{V}_{(+1) \bmod m}
\end{aligned}
$$

The last sum

$$
\sum_{k=0}^{m-1} \sum_{k=1}^{m-1} \frac{m-j}{m} \bar{V}_{l} \bar{V}_{(+\downarrow)) \bmod m}=\frac{1}{2}\left[\left(\sum_{k=0}^{m-1} \bar{V}_{l}\right)^{2}-\sum_{k=0}^{m-1} \bar{V}_{l}^{2}\right]
$$

The sum of all possible products $\overline{V_{l}} \bar{V}_{l}, l \neq l^{\prime}$.
Let $\quad \bar{V}=\frac{1}{m} \sum_{=0}^{m-1} \bar{V}_{l}$

$$
\begin{aligned}
& Y=\frac{\rho \bar{V}(m-1)}{2}+\frac{m \bar{V}(1-\rho)}{2}-\frac{(1-\rho) \sum_{=0}^{m-1} \bar{V}_{1}^{2}}{2 m \bar{V}}=\frac{\bar{V}(m-\rho)}{2}-\frac{(1-\rho) \sum_{i=0}^{m-1} \bar{V}_{1}^{2}}{2 m \bar{V}} \\
& W=\frac{\lambda \bar{X}^{2}}{2(1-\rho)}+\frac{\bar{V}(m-\rho)}{2(1-\rho)}+\frac{\sigma_{V}^{2}}{2 \bar{V}} \quad \text { where } \sigma_{V}^{2}=\frac{\sum_{=0}^{m-1}\left(\bar{V}_{1}^{2}-\bar{V}_{1}^{2}\right)}{m}
\end{aligned}
$$

For partially gated systems

Prob. a user arrives during its own transmission interval $=\frac{\rho}{m}$
\mathbf{Y} is increased by $\frac{\rho}{m} \times m \bar{V}=\rho \bar{V}$

$$
W=\frac{\overline{X^{2}}}{2(1-\rho)}+\frac{(m+\rho) \bar{v}}{2(1-\rho)}+\frac{\sigma_{V}^{2}}{2 \bar{v}}
$$

For fully gated systems
Prob. a user arrives during its own reservation or transmission interval $=\frac{1}{m}$
\mathbf{Y} is increased by $\frac{1}{m} \times m \bar{V}=\bar{V}$

$$
W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{(m+2-\rho) V}{2(1-\rho)}+\frac{\sigma_{V}^{2}}{2 \bar{V}}
$$

Nonpreemptive Priority Systems

- Priority classes K = 1, 2,, \underline{n}
highest lowest
- Poisson arrivals with rate λ_{k}, general service times $E\left(X_{k}\right)=\frac{1}{\mu}$ and $E\left(X_{k}^{2}\right)$ given
- Arrival processes independent and independent of service time.
- Nonpreemptive Priority:
* Customer currently in service is allowed to complete service.
* When server free, customer of highest priority class enters service.
$N_{Q}^{k}=$ Average number in queue for priority k
$W_{k}=$ Average queueing time for priority k
$\rho_{k}=\frac{\lambda_{k}}{\mu_{k}}=$ System utilization for priority k
$R=$ Mean residual service time

For highest priority class:

$$
\left.\begin{array}{l}
W_{1}=R+\frac{N_{Q}^{1}}{\mu_{1}} \\
N_{0}^{1}=\lambda_{1} \cdot W_{1}
\end{array}\right\} \Rightarrow W_{1}=R+\rho_{1} W_{1} \Rightarrow W_{1}=\frac{R}{1-\rho_{1}}
$$

For class 2:

$$
\begin{gathered}
\left.\begin{array}{c}
W_{2}=R R+\frac{N_{Q}^{1}}{\omega_{1}}+\frac{N_{Q}^{2}}{\mu_{2}}+\frac{1}{\mu_{1}} \times \lambda_{1} W_{2} \\
N_{Q}^{1}=\lambda_{1} W_{1}, N_{Q}^{2}=\lambda_{2} W_{2}
\end{array}\right\} \Rightarrow \\
\Rightarrow W_{2}=R+\rho_{1} W_{1}+\rho_{2} W_{2}+\rho_{1} W_{2} \\
\Rightarrow W_{2}=\frac{R}{\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)}
\end{gathered}
$$

For class k :

$$
W_{k}=\frac{R}{\left(1-\rho_{1}-\ldots . .-\rho_{k-1}\right)\left(1-\rho_{1}-\ldots . .-\rho_{k}\right)}
$$

$$
T_{k}=\frac{1}{\mu_{k}}+W_{k}
$$

$r(\tau)=$ residual time for packet in service

$M_{k}(t)=$ \# customers of class k served up to t
Time average of $r(\tau)$ up to time t

$$
\begin{aligned}
& =\frac{1}{t} \int_{0}^{t} r(\tau) d \tau \\
& =\frac{1}{t}\left[\sum_{i=1}^{M_{1}(t)} \frac{X_{i, 1}^{2}}{2}+\sum_{i=1}^{M_{2}(t)} \frac{X_{i, 2}^{2}}{2}+\cdots+\sum_{i=1}^{M_{n}(t)} \frac{X_{i, n}^{2}}{2}\right] \\
& =\frac{1}{2}\left[\frac{M_{1}(t)}{t} \cdot \frac{\sum_{i=1}^{M_{1}(t)} X_{i, 1}^{2}}{M_{1}(t)}+\frac{M_{2}(t)}{t} \cdot \frac{\sum_{i=1}^{M_{2}(t)} X_{i, 2}^{2}}{M_{2}(t)}+\cdots+\frac{M_{n}(t)}{t} \cdot \frac{\sum_{i=1}^{M_{n}(t)} X_{i, n}^{2}}{M_{2}(t)}\right]
\end{aligned}
$$

$\stackrel{t \rightarrow \infty}{\Rightarrow}$

$$
\begin{aligned}
R & =\left[\frac{1}{2} \lambda_{1} E\left(X_{1}^{2}\right)+\frac{1}{2} \lambda_{2} E\left(X_{2}^{2}\right)+\cdots \cdots+\frac{1}{2} \lambda_{n} E\left(X_{n}^{2}\right)\right] \\
W_{k} & =\frac{\sum_{i=1}^{n} \lambda_{i} E\left(X_{i}^{2}\right)}{2\left(1-\rho_{1}-\ldots .-\rho_{k-1}\right)\left(1-\rho_{1}-\ldots . .-\rho_{k}\right)}
\end{aligned}
$$

For stability: $\rho_{1}+\rho_{2}+\cdots+\rho_{n}<1$ and $E\left(X_{i}^{2}\right)<\infty$

Preemptive resume priority system

As before, but customer in service is interrupted by higher-priority customer, and resumes once all higher-priority customers have been served

Note: customers of class \mathbf{k} are not affected by customers of classes $k+1, k+2, \ldots, n$

$$
\underbrace{T_{k}}=\frac{1}{\mu_{k}}+\underbrace{\frac{R_{k}}{1-\rho_{1}-\ldots .-\rho_{k}}}+\underbrace{\sum_{j=1}^{k-1} \frac{1}{\mu_{i}} \lambda_{i} T_{k}}
$$

for priority waiting time time to serve customers class k. of $M / G / 1$ queue of priorities 1 through $k-1$ if only customers that arrive while the class of classes 1 to $k \quad k$-customer is in queue are present, time or in service. to serve customer of priorities 1 through k already in the system.
where $R_{k}=\frac{\sum_{i=1}^{k} \lambda_{i} \overline{\lambda_{i}^{2}}}{2}$
Finally, $\quad T_{k}=\frac{\frac{1}{\mu_{k}}\left(1-\rho_{1}-\ldots . .-\rho_{k}\right)+R_{k}}{\left(1-\rho_{1}-\ldots . .-\rho_{k-1}\right)\left(1-\rho_{1}-\ldots . .-\rho_{k}\right)}, \rho_{i}=\frac{\lambda_{i}}{\mu_{i}}$

