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Preface

The field of data networks has evolved over the last fifteen years from a stage
where networks were designed in a very ad hoc and technology-dependent
manner to a stage where some broad conceptual understanding of many under-
lying issues now exists. The major purpose of this book is to convey that con-
ceptual understanding to the reader.

Previous books in this field broadly separate into two major categories. The
first, exemplified by Tannenbaum [Tan81] and Stallings [Sta85], are primarily
descriptive in nature, focusing on current practice and selected details of the
operation of various existing networks. The second, exemplified by Kleinrock
[Kle76], Hayes [Hay84], and Stuck and Arthurs [StA85], deal primarily with
performance analysis. This book, in contrast, is balanced between description
and analysis. The descriptive material, however, is used to illustrate the underly-
ing concepts, and the analytical material is used to provide a deeper and more
precise understanding of the concepts. We feel that a continuing separation
between description and analysis is unwise in a field after the underlying con-
cepts have been developed; understanding is then best enhanced by focusing on
the concepts.

The book is designed to be used at a number of levels, varying from a
senior undergraduate elective, to a first year graduate course, to a more ad-
vanced graduate course, to a reference work for designers and researchers in the
field. The material has been tested in a number of graduate courses at M.I.T.
and in a number of short courses at varying levels. The book assumes some
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background in elementary probability and some background in either electrical
engineering or computer science, but aside from this, the material is self-con-
tained.

Throughout the book, major concepts and principles are first explained in
a simple non-mathematical way. This is followed by careful descriptions of mod-
elling issues and then by mathematical analysis. Finally, the insights to be gained
from the analysis are explained and examples are given to clarify the more subtle
issues. Figures are liberally used throughout to illustrate the ideas. For lower-
level courses, the analysis can be glossed over; this allows the beginning and
intermediate-level to grasp the basic ideas, while enabling the more advanced
student to acquire deeper understanding and the ability to do research in the
field.

Chapter 1 provides a broad introduction to the subject and also develops
the layering concept. This layering allows the various issues of data networks to
be developed in a largely independent fashion, thus making it possible to read
the subsequent chapters in any desired depth (including omission) without seri-
ously hindering the ability to understand other chapters.

Chapter 2 treats the two lowest layers of the above layering. The lowest, or
physical, layer is concerned with transmitting a sequence of bits over a physical
communication medium. We provide a brief introduction to the subject which
will be helpful but not necessary in understanding the rest of the text. The next
layer, data link control, deals with transmitting packets reliably over a communi-
cation link. Section 2.4, treating retransmission strategies, should probably be
covered in any course, since it brings out the subtleties, in the simplest context, of
understanding distributed algorithms, or protocols.

Chapter 3 develops the queueing theory used for performance analysis of
multiaccess schemes (Chapter 4) and, to a lesser extent, routing algorithms
(Chapter 5). Less analytical courses will probably omit most of this chapter,
simply adopting the results on faith. Little's theorem and the Poisson process
should be covered however, since they are simple and greatly enhance under-
standing of the subsequent chapters. This chapter is rich in results, often de-
veloped in a far simpler way than found in the queueing literature. This
simplicity is achieved by considering only steady-state behavior and by some-
times sacrificing rigor for clarity and insight. Mathematically sophisticated read-
ers will be able to supply the extra details for rigor by themselves, while for most
readers the extra details would obscure the line of argument.

Chapter 4 develops the topic of multiaccess communication, including local
area networks, satellite networks, and radio networks. Less theoretical courses
will probably skip the last half of section 4.2, all of section 4.3, and most of
section 4.4, getting quickly to local area networks and satellite networks in sec-
tion 4.5. Conceptually, one gains a great deal of insight into the nature of
distributed algorithms in this chapter.

Chapter 5 develops the subject of routing. The material is graduated in
order of increasing difficulty and depth, so readers can go as far as they are

I
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comfortable. Along with routing itself, which is treated in greater depth than
elsewhere in the literature, further insights are gained into distributed
algorithms. There is also a treatment of topological design and a section on
recovery from link failures.

Chapter 6 deals with flow control (or congestion control as it is sometimes
called). The first three sections are primarily descriptive, describing first the
objectives and the problems in achieving these objectives, second, some general
approaches, and finally, the ways that flow control is handled in several existing
networks. The last section is more advanced and analytical, treating recent work
in the area.

A topic that is not treated in any depth in the book is that of higher-layer
protocols, namely the various processes required in the computers and devices
using the network to communicate meaningfully with each other given the
capability of reliable transport of packets through the network provided by the
lower layers. This topic is different in nature than the other topics covered and
would have doubled the size of the book if treated in depth.

We apologize in advance for the amount of acronyms and jargon in the
book. We felt it was necessary to include at least the most commonly used
acronyms in the field, both to allow readers to converse with other workers in the
field and also for the reference value of being able to find out what these
acronyms mean.

An extensive set of problems are given at the end of each chapter except
the first. They range from simple exercises to gain familiarity with the basic
concepts and techniques to advanced problems extending the results in the text.
Solutions of the problems are given in a manual available to instructors from
Prentice-Hall.

Each chapter contains also a brief section of sources and suggestions for
further reading. Again, we apologize in advance to the many authors whose
contributions have not been mentioned. The literature in the data network field
is vast, and we limited ourselves to references that we found most useful, or
that contain material supplementing the text.

The stimulating teaching and research environmient at M.I.T. has been an
ideal setting for the development of this book. In particular we are indebted to
the many students who have used this material in courses. Their comments have
helped greatly in clarifying the topics. We are equally indebted to the many
colleagues and advanced graduate students who have provided detailed critiques
of the various chapters. Special thanks go to our colleague Pierre Humblet
whose advice, knowledge, and deep insight have been invaluable. In addition,
Erdal Arikan, David Castanon, Robert Cooper, Tony Ephremides, Eli Gafni,
Marianne Gardner, Paul Green, Ellen Hahne, Bruce Hajek. Robert Kennedy,
John Spinelli, and John Tsitsiklis have all been very helpful. We are also grateful
to Nancy Young for typing the many revisions and to Amv Hendrikson for
computer typesetting the book using the TEX system. Our editors at Prentice-
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Hall have also been very helpful and cooperative in producing the final text
under a very tight schedule. Finally we wish to acknowledge the research sup-
port of DARPA under grant ONR-N00014-84-K-0357, NSF under grants
ECS-8310698, and ECS-8217668, and ARO under grant DAAG 29-84-K-000.

Dimitri Bertsekas

Robert Gallager



Delay Models

in Data Networks

3.1 INTRODUCTION

One of the most important performance measures of a data network is the average
delay required to deliver a packet from origin to destination. Furthermore, delay
considerations strongly influence the choice and performance of network algorithms,
such as routing and flow control. For these reasons, it is important to understand
the nature and mechanism of delay, and the manner in which it depends on the
characteristics of the network.

Queueing theory is the primary methodological framework for analyzing net-
work delay. Its use often requires simplifying assumptions since, unfortunately,
more realistic assumptions make meaningful analysis extremely difficult. For this
reason, it is sometimes impossible to obtain accurate quantitative delay predictions
on the basis of queueing models. Nevertheless, these models often provide a ba-
sis for adequate delay approximations, as well as valuable qualitative results and
worthwhile insights.

In what follows, we will focus on packet delay within the communication sub-
net (i.e., the network layer). This delay is the sum of delays on each subnet link
traversed by the packet. Each link delay in turn consists of four components.

1. The processing delay between the time the packet is correctly received at the
head node of the link and the time the packet is assigned to an outgoing link
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queue for transmission. (In some systems, we must add to this delay some
additional processing time at the DLC and physical layers.)

2. The queueing delay between the time the packet is assigned to a queue for
transmission and the time it starts being transmitted. During this time, the
packet waits while other packets in the transmission queue are transmitted.

3. The transmission delay between the times that the first and last bits of the
packet are transmitted.

4. The propagation delay from the time the last bit is transmitted at the head
node of the link until the time it is received at the tail node. This is pro-
portional to the physical distance between transmitter and receiver and is
ordinarily small except in the case of a satellite link.

This accounting neglects the possibility that a packet may require retransmis-
sion on a link due to transmission errors or various other causes. For most links
in practice, other than multiaccess links to be considered in Chapter 4, retrans-
missions are rare and will be neglected. The propagation delay depends on the
physical characteristics of the link and is independent of the traffic carried by the
link. The processing delay is also independent of the amount of traffic handled by
the corresponding node if computation power is not a limiting resource. This will
be assumed in our discussion. Otherwise, a separate processing queue must be in-
troduced prior to the transmission queues. Most of our subsequent analysis focuses
on the queueing and transmission delays. We first consider a single transmission
line and analyze some classical queueing models. We then take up the network
case and discuss the type of approximations involved in deriving analytical delay
models.

While our primary emphasis is on packet-switched network models, some of
the models developed are useful in a circuit-switched network context. Indeed,
queueing theory was extensively developed in response to the need for performance
models in telephony.

3.1.1 Multiplexing of Traffic on a Communication Link

The communication link considered is viewed as a bit pipe over which a given num-
ber of bits per second can be transmitted. This number is called the transmission
capacity of the link. It depends both on the physical channel and the interface
(e.g., modems), and is simply the rate at which the interface accepts bits. The link
capacity may serve several traffic streams (e.g., virtual circuits or groups of virtual
circuits) multiplexed on the link. The manner of allocation of capacity among these
traffic streams has a profound effect on packet delay.

In the most common scheme, statistical multiplexing, the packets of all traffic
streams are merged into a single queue and transmitted on a first-come first-serve
basis. A variation of this scheme, which has roughly the same average delay per
packet, maintains a separate queue for each traffic stream and serves the queues in

_1_11__
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sequence one packet at a time. However, if the queue of a traffic stream is empty,
the next traffic stream is served and no communication resource is wasted. Since
the entire transmission capacity C (bits/sec) is allocated to a single packet at a
time, it takes LIC sec to transmit a packet that is L bits long.

In time-division (TDM) and frequency-division multiplexing (FDM) with m
traffic streams, the link capacity is essentially subdivided into m portions-one per
traffic stream. In FDM, the channel bandwidth W is subdivided into m channels
each with bandwidth W/m (actually slightly less because of the need for guard
bands between channels). The transmission capacity of each channel is roughly
C/m, where C is the capacity that would be obtained if the entire bandwidth was
allocated to a single channel. The transmission time of a packet that is L bits
long is Lm/C, or m times longer than in the corresponding statistical multiplexing
scheme. In TDM, allocation is done by dividing the time axis into slots of fixed
length (e.g., one bit or one byte long, or perhaps one packet long for fixed length
packets). Again, conceptually, we may view the communication link as consisting of
m separate links with capacity C/rnm. In the case where the slots are short relative
to packet length, we may again regard the transmission time of a packet L bits long
as Lm/C. In the case where the slots are of packet length, the transmission time
of an L bit packet is LIC, but there is a wait of (m - 1) packet transmission times
between packets of the same stream.

One of the themes that will emerge from our queueing analysis is that statis-
tical multiplexing has smaller average delay per packet than either TDM or FDM.
This is particularly true when the traffic streams multiplexed have a relatively low
duty cycle. The main reason for the poor delay performance of TDM and FDM is
that communication resources are wasted when allocated to a traffic stream with a
momentarily empty queue, while other traffic streams have packets waiting in their
queue. For a traffic analogy, consider an m-lane highway and two cases. In one
case, cars are not allowed to cross over to other lanes (this corresponds to TDM or
FDM), while in the other case, cars can change lanes (this corresponds roughly to
statistical multiplexing). Restricting crossover increases travel time for the same
reason that the delay characteristics of TDM or FDM are poor, namely some sys-
tem resources (highway lanes or communication channels) may not be utilized while
others are momentarily stressed.

Under certain circumstances, TDM or FDM may have an advantage. Suppose
that each traffic stream has a "regular" character, i.e., all packets arrive sufficiently
apart so that no packet has to wait while the preceding packet is transmitted. If
these traffic streams are merged into a single queue, it can be shown that the
average delay per packet will decrease, but the variance of waiting time in queue
will generally become positive (for an illustration see Prob. 3.7). Therefore, if
maintaining small variability of delay is more important than decreasing delay, it
may be preferable to use TDM or FDM. Another advantage of TDM and FDM is
that there is no need to include identification of the traffic stream on each packet,
thereby saving some overhead.
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3.2 QUEUEING MODELS--LITTLE'S THEOREM

We consider queueing systems where customers arrive at random times to obtain
service. The probability distribution of the time between two successive arrivals
(the interarrival time), and the probability distribution of the customers' service
time are given.

In the context of a data network, customers represent packets assigned to
a communication link for transmission. Service time corresponds to the packet
transmission time and is equal to LI/C, where L is the packet length in bits and
C is the link transmission capacity in bits/sec. In this chapter it is convenient
to ignore the layer 2 distinction between packets and frames; thus packet lengths
are taken to include frame headers and trailers. In a somewhat different context
(which we will not dwell on very much), customers represent active conversations
(or virtual circuits) between points in a network and service time corresponds to
the duration of a conversation.

We shall be typically interested in estimating quantities such as:

1. The average number of customers in the system (i.e., the "typical" number
of customers either waiting in queue or undergoing service).

2. The average delay per customer (i.e., the "typical" time a customer spends
waiting in queue plus the service time).

We first need to clarify the meaning of the terms above. Let us denote

p,(t) = Probability of n customers waiting in
queue or under service at time t

The typical situation is one whereby we are given the initial probabilities p,(0)
at time 0 and enough statistical information is provided to determine, at least in
principle, the probabilities pn(t) for all times t. Then denoting

N(t) = Average number in the system at time t

we have
0o

E= n pnt)
n=o

Note that both N(t) and pn(t) depend on t as well as the initial probability dis-
tribution {po(0), p1(0),...}. However, the queueing systems that we will consider
typically reach equilibrium in the sense that for some pn and N (independent of the
initial distribution), we have

lim pn(t) = pn, n = 0, 1,... (3.1)
t--oo

and
00

N = np, lim W(t)
n=O
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We will be interested primarily in the equilibrium probabilities and the average
number in the system. Note that it is possible that N = oo and this will occur
whenever the arrival rate exceeds the service capacity of the system. Individual
sample functions of the number of customers in the system will be denoted by
N(t). The time average of such a sample function in the interval [0, t] is defined by

Nt = N(r) d

Almost every system of interest to us is ergodic in the sense that

lim Nt = lim N(t) = N
t-OO t-+OO

holds with probability one. The equality of long term time average and ensem-
ble average of various stochastic processes will often be accepted in this chapter
on intuitive grounds since a rigorous mathematical justification requires technical
arguments that are beyond the scope of this text.

Regarding average delay per customer, the situation is one whereby enough
statistical information is available to determine in principle the probability distri-
bution of delay of each individual customer (i.e., the first, second, etc.). From this,
we can determine the average delay of each customer. The average delay of the kth
customer, denoted Tk, typically converges as k -- oo to a steady-state value

T = lim Tk
k-oo

The limit above is what we will call average delay per customer. (Again, T = oo
is possible.) For the systems of interest to us, the steady-state average delay T is
also equal (with probability one) to the long-term time average of customer delay,
i.e.,

k

T = lim Tk•= lim Ti
i=1

where Ti is the delay of the it h customer.
The average number in the system N and the average delay T are related by

a simple formula that makes it possible to determine one given the other. This
result, known as Little's Theorem, has the form

N= AT

where
A = Average customer arrival rate

and is given by

A = lim Expected number of arrivals in the interval [0, t]
t--oo t
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(We will be assuming that the limit above exists.) Phenomena reflecting Little's
Theorem are familiar from everyday experience. For example, on a rainy day, traffic
on a rush hour moves slower than average (large T) while the streets are more
crowded (large N). Similarly, a fast-food restaurant (small T) needs a smaller
waiting room (small N) than a regular restaurant for the same customer arrival
rate.

Little's Theorem is really an accounting identity and its derivation is very
simple. We will give a graphical proof, which assumes that customers are served
in the order they arrive. A similar proof is possible for the case where the order of
service is arbitrary (see Problems 3.31 and 3.32). For any sample system history
let us denote:

a(t) = Number of arrivals in the interval [0, t]

,6(t) = Number of departures in the interval [0, t]

Assuming an empty system at time 0, the number in the system at time t is

N(t) = a(t) - f(t)

Let t4 and Ti be the time of arrival and the time spent in the system, respectively,
by the ith customer. Consider any time t and the shaded area in Fig. 3.1 which lies
between the graphs of a(r) and 6(r) up to time t. This area can be expressed as

otN(r) dr

but also as
3(t) a(t)

Ti+ (t-t )
i=1 i=fi(t)+1

Dividing both expressions above by t and equating them, we obtain

Nt = AtTt (3.2)

where

fot N(r) drNt =Time average of the number of customers in the
t system in the interval [0, t]

At = t) =Time average of the customer arrival rate in the
t interval [0, t]

0(t) a(t)
-Ti+ F (t-ti)

i=1 i=8(t)+lTt(t =Time average of the time a customer spends in
=a(t) the system in the interval [0, t]

_·_
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Figure 3.1 Proof of Little's Theorem. The shaded area can be expressed
0(t) a(t)

both as f N(r) dr and as Ti + (t - ti). Dividing both expressions
i=1 i=0(t)+l

by t, equating them, and taking the limit as t -* oo gives Little's Theorem.

Assuming that

Nt - N, At - A, Tt -T

we obtain from Eq. (3.2) the desired formula.
Note that the expression Tt includes the total time spent in the system for all

the arrivals from 1 to P(t), but omits the time spent beyond t for the customers
still in the system at time t. Assuming that NAt - N < oo, this end effect due to
customers in the system at time t will be small relative to the accumulated time in
the system of customers 1 to f(t), and Tt for large t can be interpreted as the time
average of the system time.

Strictly speaking, for the argument above to be correct, we must be assured
that the time averages Nt, At, Tt converge with probability one to the corresponding
ensemble averages N, A, and T. This is true in just about every case of interest
to us, and in subsequent analysis, we will accept Little's Theorem without further
scrutiny.

The significance of Little's Theorem is due in large measure to its generality.
It holds for almost every queueing system that reaches statistical equilibrium in
the limit. The system need not consist of just a single queue. Indeed, the theorem
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holds for many complex arrival-departure systems with appropriate interpretation
of the terms N, A, and T. The following examples illustrate its broad applicability.

Example 1

If A is the arrival rate in a transmission line, NQ is the average number of packets
waiting in queue (but not under transmission), and W is the average time spent by
a packet waiting in queue (not including the transmission time), Little's Theorem
gives

NQ = AW

Furthermore if X is the average transmission time, then Little's Theorem gives the
average number of packets under transmission as

p= AX

Since at most one packet can be under transmission, p is also the line's utilization
factor, i.e., the proportion of time that the line is busy transmitting a packet.

Example 2

Consider a network of transmission lines where packets arrive at n different nodes
with corresponding rates A1,..., A, . If N is the average total number of packets
inside the network, then (regardless of the packet length distribution and method
for routing packets) the average delay per packet is

N

Furthermore, Little's Theorem also yields Ni = AiTi, where N1 and Ti are the
average number in the system and average delay of packets arriving at node i,
respectively.

Example 3

A packet arrives at a transmission line every K seconds with the first packet arriving
at time 0. All packets have equal length and require aK seconds for transmission
where a < 1. The processing and propagation delay per packet is P seconds.
The arrival rate here is A = 1/K. Because packets arrive at a regular rate (equal
interarrival times), there is no delay for queueing, so the time T a packet spends in
the system (including the propagation delay) is

T = aK + P

According to Little's Theorem, we have

PN=AT=a+-
K

Chap. 3
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departure departure

Figure 3.2 The number in the system in Example 3, N(t),
is deterministic and does not converge as t -- oo. However, Little's
Theorem holds if N, A, and T are interpreted as time averages.

One should be careful about interpreting correctly the formula in this example.
Here the number in the system N(t) is a deterministic function of time. Its form
is shown in Fig. 3.2 for the case where K < aK + P < 2K, and it can be
seen that N(t) does not converge to any value (the system never reaches statistical
equilibrium.) However, Little's Theorem is correct provided N is viewed as a long-
term time average of N(t), i.e.,

N= lim S N(r)dr
t-oo t

Example 4

Consider a window flow control system (as described in subsection 2.8.1) with a
window of size N for each session. Suppose that a session always has packets to
send and that acknowledgements take negligible time; then, when packet i arrives at
the destination, packet i + N is immediately introduced into the network. Since the
number of packets in the system per session is always N, Little's Theorem asserts
that the arrival rate A of packets into the system for each session, and the average
packet delay are related by N = AT. Thus, if congestion builds up in the network
and T increases, A must decrease. Note also that if the network is congested and
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capable of delivering only A packets per unit time for each session, then increasing
the window size N for all sessions merely serves to increase the delay T.

Example 5

Consider a queueing system with K servers, and with room for at most N > K
customers (either in queue or in service). The system is always full; we assume that
it starts with N customers and that a departing customer is immediately replaced by
a new customer. (Queueing systems of this type are called closed.) Suppose that the
average customer service time is X. We want to find the average customer time in
the system T. We apply Little's Theorem twice, first for the entire system, obtaining
N = AT, and then for the service portion of the system, obtaining K = AX (since
all servers are constantly busy). By eliminating A in these two relations we have

NX
K

Example 6: Estimating throughput in a time-sharing
system

Little's Theorem can sometimes be used to provide bounds on the attainable system
throughput A. In particular, known bounds on N and T can be translated into
throughput bounds via A = NIT. As an example, consider a time-sharing computer
system with N terminals. A user logs into the system through a terminal, and,
after an initial reflection period of average length R, submits a job that requires an
average processing time P at the computer. Jobs queue up inside the computer and
are served by a single CPU according to some unspecified priority or time-sharing
rule.

We would like to get estimates of the throughput sustainable by the system
(in jobs per unit time), and corresponding estimates of the average delay of a user.
Since we are interested in maximum attainable throughput, we assume that there is
always a user ready to take the place of a departing user, so the number of users in
the system is always N. For this reason, it is appropriate to adopt a model whereby
a departing user immediately reenters the system as shown in Fig. 3.3.

Applying Little's Theorem to the portion of the system between the entry to
the terminals and the exit of the system (points A and C in Fig. 3.3), we have

N
A = -(3.3)

where T is the average time a user spends in the system. We have

T=R+D (3.4)

where D is the average delay between the time a job is submitted to the computer
and the time its execution is completed. Since D can vary between P (case where
the user's job does not have to wait for other jobs to be completed) and NP (case
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Figure 3.3 N terminals connected with a time-sharing computer
system. To estimate maximum attainable throughput, we assume that
a departing user immediately reenters the system or, equivalently, is
immediately replaced by a new user.

where the user's job has to wait for the jobs of all the other users; compare with
Ex. 5), we have

R + P T < R+NP (3.5)

Combining this relation with Eq. (3.3), we obtain

N N
< A < - (3.6)

R+NP R+P

The throughput A is also bounded above by the processing capacity of the computer.
In particular, since the execution time of a job is P units on the average, it follows
that the computer cannot process in the long run more than 1/P jobs per unit time,
i.e.,

1
A < (3.7)
-P

(This conclusion can also be reached by applying Little's Theorem between the entry
and exit points of the computer's CPU.)

By combining relations (3.6) and (3.7), we obtain the bounds

N N
N < A < min N (3.8)

R +NP - ' R+P
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for the maximum attainable throughput. By using T = N/A, we also obtain bounds
for the average user delay when the system is fully loaded

max {NP, R + P} < T < R + NP (3.9)

These relations are illustrated in Fig. 3.4.
It can be seen that as the number of terminals N increases, the throughput

approaches the maximum 1/P, while the average user delay rises essentially in direct
proportion with N. The number of terminals becomes a throughput bottleneck when
N < 1 + RIP, in which case the computer resource stays idle for a substantial
portion of the time while all users are engaged in reflection. In contrast, the limited
processing power of the computer becomes the bottleneck when N > 1 + R/P. It
is interesting to note that while the exact maximum attainable throughput depends
on system parameters, such as the statistics of the reflection and processing times,
and the manner in which jobs are served by the CPU, the bounds obtained are
independent of these parameters. We owe this convenient situation to the generality
of Little's Theorem.

3.3 THE M/M/1 QUEUEING SYSTEM

The M/M/1 queueing system consists of a single queueing station with a single
server (in a communication context, a single transmission line). Customers arrive
according to a Poisson process with rate A, and the probability distribution of the
service time is exponential with mean 1/p sec. We will explain the meaning of these
terms shortly. The name M/M/1 reflects standard queueing theory nomenclature
whereby:

1. The first letter indicates the nature of the arrival process (e.g., M stands
for memoryless, which here means a Poisson process (i.e., exponentially dis-
tributed interarrival times), G stands for a general distribution of interarrival
times, D stands for deterministic interarrival times).

2. The second letter indicates the nature of the probability distribution of the
service times (e.g., M, G, and D stand for exponential, general, and deter-
ministic distributions, respectively). In all cases, successive interarrival times
and service times are assumed to be statistically independent of each other.

3. The last number indicates the number of servers.

We have already established, via Little's Theorem, the relations

N = AT, NQ = AW
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Figure 3.4 Bounds on throughput and average user delay in a time-
sharing system. (a) Bounds on attainable throughput [Eq. (3.8)].
(b) Bounds on average user time in a fully loaded system [Eq. (3.9)]. The time
increases essentially in proportion with the number of terminals N.

between the basic quantities,

N : Average number of customers in the system

T: Average customer time in the system

NQ : Average number of customers waiting in queue

W : Average customer waiting time in queue

-C

I-M

1/P
03
-0

30

"• R +PE
•3C

S R

03
IM



Delay Models in Data Networks

However, N, T, NQ, and W cannot be specified further unless we know some-
thing more about the statistics of the system. Given these statistics, we will be
able to derive the steady-state probabilities

p, = Probability of n customers in the system, n = 0, 1,...

From these probabilities, we can get

00

N= npn
n=0

and, using Little's Theorem,

N
T=-

Similar formulas exist for NQ and W. Appendix B provides a summary of the
results for the M/M/1 system and the other major systems analyzed later.

The analysis of the M/M/1 system as well as several other related systems,
such as the M/M/m or M/M/oo systems, is based on the theory of Markov chains
summarized in Appendix A. An alternative approach is to use simple graphical
arguments based on the concept of mean residual time introduced in section 3.5.
This approach does not require that the service times are exponentially distributed,
i.e., it applies to the M/G/1 system. The price paid for this generality is that
the characterization of the steady-state probabilities is less convenient and simple
than for the M/M/1 system. The reader wishing to circumvent the Markov chain
analysis may start directly with the M/G/1 system in section 3.5 after a reading
of the preliminary facts on the Poisson process given in subsections 3.3.1 and 3.3.2.

3.3.1 Main Results

A stochastic process { A(t) I t > 0} taking nonnegative integer values is said to be
a Poisson process with rate A if

1. A(t) is a counting process that represents the total number of arrivals that
have occurred from 0 to time t, i.e., A(O) = 0, and for s < t, A(t) - A(s)
equals the number of arrivals in the interval (s, t].

2. The numbers of arrivals that occur in disjoint time intervals are independent.

Chap. 3
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3. The number of arrivals in any interval of length r is Poisson distributed with
parameter Ar. That is, for all t, r > 0,

P {A(t + r) - A(t) = n} = e-  , n = 0, 1,... (3.10)

We list some of the properties of the Poisson process that will be of interest:

(a) Interarrival times are independent and exponentially distributed with
parameter A, i.e., if tn denotes the time of the nth arrival, the intervals

rn = tn+l - tn have the probability distribution

P {r, 5s}l =1 - e-A , s > 0 (3.11)

and are mutually independent. (The corresponding probability density
function is p(Tn) = Ae- r . The mean and variance of rn are 1/A and
1/A2 , respectively.)

(b) For every t > 0 and 6 > 0

P {A(t + 6) - A(t) = 0} = 1 - A6 + o(6) (3.12)

P {A(t + 6) - A(t) = 1} = A6 + o(6) (3.13)

P {A(t + 6) - A(t) > 2} = o(6) (3.14)

where we generically denote by o(6) a function of 6 such that

lim o(6) = 0
6-o 6

These equations can be verified using Eq. (3.10) (see Prob. 3.10).

Note that if the arrivals in n disjoint intervals are independent and Poisson
distributed with parameters Arl,..., Ar, then the number of arrivals in the union
of the intervals is Poisson distributed with parameter A(rl + - - -+ Tr). This follows
from properties of the Poisson distribution and guarantees that the requirement of
Eq. (3.10) is consistent with the independence requirement in the definition of the
Poisson process (see Prob. 3.10). Another fact that we will frequently use is that
if two or more independent Poisson processes A 1 ,..., Ak are merged into a single
process A = A 1 + A 2 + - - -+ Ak, then the latter process is Poisson with a rate equal
to the sum of the rates of its components (see Prob. 3.10).

Our assumption regarding the service process is that the customer service
times have an exponential distribution with parameter p, i.e., if sn is the service
time of the nth customer,

P {sn s} = 1 - e-e" 8 , s > 0
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(The probability density function of s, is p(s,) = pe- Ps , and its mean and vari-
ance are 1/pu and 1/p•2, respectively.) Furthermore, the service times s, are mutu-
ally independent and also independent of all interarrival times. The parameter p is
called the service rate, and represents the rate (in customers served per unit time)
at which the server operates when busy.

An important fact regarding the exponential distribution is its memoryless,
character, which can be expressed as

P{rn > r+tn > t} = P{r > r}, for r,t >O

P {s > r+tlsn > t} = P {s, > r}, for r,t >O

for the interarrival and service times rn and s8, respectively. This means that the
additional time needed to complete a customer's service in progress is independent
of when the service started. Similarly, the time up to the next arrival is independent
of when the previous arrival occurred. Verification of the memoryless property
follows from the calculation

P {rn > r + t} r > t} = e-_ = P {r. > r}
P {rn > t} e-xt

The memoryless property together with our earlier independence assumptions
on interarrival and service times imply that once we know the number N(t) of
customers in the system at time t, the times at which customers will arrive or
complete service in the future are independent of the arrival times of the customers
presently in the system and of how much service the customer currently in service
(if any) has already received. This means that {N(t)|t > 0} is a continuous-time
Markov chain.

We could analyze the process N(t) in terms of continuous-time Markov chain
methodology; most of the queueing literature follows this line of analysis. It is
sufficient, however, for our purposes in this section to use the simpler theory of
discrete-time Markov chains (briefly summarized in Appendix A).

Let us focus attention at the times

0, 6, 26,...,kb,...

where 6 is a small positive number. We denote

Nk = Number of customers in the system at time k6

Since Nk = N(k6) and, as discussed, N(t) is a continuous-time Markov chain,
we see that {Nklk = 0,1,...} is a discrete-time Markov chain. Let P,, denote the
corresponding transition probabilities

Pij = P {Nk+l = jlNk = i

Chap. 3
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Figure 3.5 Discrete-time Markov chain for the M/M/1 system. The
state n corresponds to n customers in the system. Transition probabilities
shown are correct up to an o(6) term.

Note that Pij depends on 6, but to keep notation simple, we do not show this
dependence. By using Eqs. (3.12) through (3.14), we have

Poo= 1 - A6 + o(6) (3.15)

Pii= 1 - A6 - p6 + o(6), i > 1 (3.16)

Pii+1 = A6 + o(6), i > 0 (3.17)

Pi,i-1-= p6 + o(6), i > 1 (3.18)

Pii= o(6), i and j Z i, i + 1, i - 1

To see how these equations are verified, note that, when at a state i > 1,
the probabilities of 0 arrivals and 0 departures in an interval Ik = (kb, (k + 1)6] is
(e-AS)(e-'6); this is because the number of arrivals and the number of departures
are Poisson distributed and independent of each other. Expanding this in a power
series in 6,

P{0 customers arrive and 0 depart in Ik} = 1 - Ab - p6 + o(6) (3.19)
Similarly, we have that

P{0 customers arrive and 1 departs in Ik) = p6 + o(6)

P{1 customer arrives and 0 depart in Ik} = A6 + 0(6)

These probalities add up to one plus o(6). Thus, the probability of more than one
arrival or departure is negligible for 6 small. This means that, for i > 1, pii, which
is the probability of an equal number of arrivals and departures in Ik, is within
o(6) of the value in Eq. (3.19); this verifies Eq. (3.16). Equations (3.15), (3.17),
and (3.18) are verified in the same way.

The state transition diagram for the Markov chain {Nk} is shown in Fig. 3.5
where we have omitted the terms o(6).

Consider now the steady-state probabilities

Pn= lim P {Nk = n}
k- oo

= lim P {N(t) = n}
t-0oo

1- ? I-I-I-. 1- M-rs 1 -?,8 -/Z6 1-u6- rs
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Note that for any k 2 1, n > 0, during the time from 6 to k6, the total number of
transitions from state n to n + 1 must differ from the total number of transitions
from n+l to n by at most 1. Thus, in steady state, the probability that the system
is in state n and makes a transition to n + 1 at the next transition instant is the
same as the probability that the system is in state n + 1 and makes a transition to
n, i.e.,

pnA6 + o(6) = pn+l1A6 + 0(6) (3.20)

(These equations are called global balance equations corresponding to the set of
states {0,1,...,n} and {n+ 1,n+2,...}. See Appendix A for a more general
statement of these equations, and for an interpretation that parallels the argument
given above to derive Eq. (3.20).) Since pn is independent of 6, by taking the limit
in Eq. (3.20) as 6 -* 0, we obtain

Pn+I=PPn, n=0,1,...

where
A

It follows that
Pn+l = P+l P0, n = 0, 1,... (3.21)

If p < 1 (service rate exceeds arrival rate), the probabilities pn are all positive and
add up to unity, so

00 00

1= Pn = p"p = P o (3.22)
n=O n=O

This equation, together with Eq. (3.21), gives finally

P = pn(1 - p), n=0,1,... (3.23)

We can now calculate the average number of customers in the system in steady
state:

N= lim E{N(t)}= -npn= E'np(1-p)
n=O n=O

= p(1 - p) n pOn- 1 = p(l - p) p
n=O -- pn=o

= (1 - p)-- p(1 - p)
p p(1 - p)

and, finally, using p = A/p

N= p  (3.24)
1-p -A

__ _·
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Figure 3.6 The average number in the system versus the utilization
factor in the M/M/1 system. As p -+ 1, N -- oo.

This equation is shown in the diagram of Fig. 3.6. As p increases, so does N, and
as p -- 1, we have N -- oo. The diagram is valid for p < 1. If p > 1, the server
cannot keep up with the arrival rate and the queue length increases without bound.
In the context of a packet transmission system, p > 1 means that AL > C, where
A is the arrival rate in packets/sec, L is the average packet length in bits, and C is
the transmission capacity in bits/sec.

The average delay per customer (waiting time in queue plus service time) is
given by Little's Theorem,

N p
T = N (3.25)

Using p = A/p, this becomes

T = (3.26)
p-A

The average waiting time in queue, W, is the average delay T less the average
service time 1/p, so

1 1 p
p-A /p p-A\
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By Little's Theorem, the average number of customers in queue is

Nq = AW =
1-p

A very useful interpretation is to view the quantity p as the utilization factor
of the queueing system, i.e., the long-term proportion of time the server is busy.
We showed this earlier in a broader context by using Little's Theorem (Ex. 1 in
section 3.2). It follows that p = 1 - Po, where Po is the probability of having no
customers in the system, and we obtain an alternative verification of the formula
derived for Po (Eq. (3.22)).

We illustrate these results by means of some examples from data networks:

Example 7: Increasing the arrival and transmission rates by
the same factor

Consider a packet transmission system whose arrival rate (in packets/sec) is in-
creased from A to KA, where K > 1 is some scalar factor. The packet length
distribution remains the same but the transmission capacity is increased by a factor
of K, so the average packet transmission time is now 1/(Ku) instead of 1/p. It
follows that the utilization factor p and, therefore, the average number of packets
in the system remain the same

N-
i-p p-A

However, the average delay per packet is now T = N/(KA) and is therefore de-
creased by a factor of K. In other words, a transmission line K times as fast
will accommodate K times as many packets/see at K times smaller average
delay per packet. This result is quite general, even applying to networks of queues.
What is happening, as illustrated in Fig. 3.7, is that by increasing arrival rate and
service rate by a factor K, the statistical characteristics of the queueing process are
unaffected except for a change in time scale-the process is speeded up by a factor
K. Thus, when a packet arrives, it will see ahead of it statistically the same number
of packets as with a slower transmission line. However, the packets ahead of it will
be moving K times faster.

Example 8: Statistical multiplexing compared with time- and
frequency-division multiplexing

Assume that m statistically identical and independent Poisson packet streams each
with an arrival rate of A/m packets/sec are to be transmitted over a communi-
cation line. The packet lengths for all streams are independent and exponentially
distributed. The average transmission time is 1/p1. If the streams are merged into a
single Poisson stream, with rate A, as in statistical multiplexing, the average delay
per packet is

1
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Figure 3.7 Increasing the arrival rate and the service rate by the same
factor (see Ex. 7). (a) Sample paths of number of arrivals a(t) and departures
0(t) in the original system. (b) Corresponding sample paths of number of
arrivals a(t) and departures ((t) in the "speeded up" system, where the arrival
rate and the service rate have been increased by a factor of two. The average
number in the system is the same as before, but the average delay is reduced
by a factor of two since customers are moving twice as fast.
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If, instead, the transmission capacity is divided into m equal portions, one per packet
stream as in time- and frequency-division multiplexing, each portion behaves like
an M/M/1 queue with arrival rate A/m and average service rate p/m. Therefore,
the average delay per packet is

T=

i.e., m times larger than for statistical multiplexing.
The preceding argument indicates that multiplexing a large number of traffic

streams on separate channels in a transmission line performs very poorly in terms of
delay. The performance is even poorer if the capacity of the channels is not allocated
in direct proportion to the arrival rates of the corresponding streams-something
that cannot be done (at least in the scheme considered here) if these arrival rates
change over time. This is precisely why data networks that must contend with many
low duty cycle traffic streams are organized on the basis of some form of statistical
multiplexing. An argument in favor of time- and frequency-division multiplexing
arises when each traffic stream is "regular" (as opposed to Poisson) in the sense
that no packet arrives while another is transmitted, and thus there is no waiting
in queue if that stream is transmitted on a dedicated transmission line. If several
streams of this type are statistically multiplexed on a single transmission line, the
average delay per packet will decrease, but the average waiting time in queue will
become positive. For example in telephony each traffic stream is a voice conversation
that is regular in the above sense, and time- and frequency-division multiplexing are
still used widely.

3.3.2 Occupancy Distribution Upon Arrival

In our subsequent development, there are several situations where we will need a
probabilistic characterization of a queueing system as seen by an arriving customer.
In some systems, the times of customer arrivals are in some sense nontypical, so
that the steady-state occupancy probabilities upon arrival

an = lim P{N(t) = nI an arrival occurred just after time t} (3.27)
t--oo

need not be equal to the corresponding unconditional steady-state probabilities

pn = lim P{N(t) = n} (3.28)
t0oo

It turns out, however, that for the M/M/1 system, we have

Pn=an, n = 0,1,... (3.29)

Indeed this equality holds under very general conditions for queueing systems with
Poisson arrivals regardless of the distribution of the service times. The only addi-
tional requirement we need is that future arrivals are independent of the current

___
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number in the system. More precisely, we assume that for every time t and interval
6 > 0, the number of arrivals in the interval (t, t + 6) is independent of the number
in the system at time t. Given the Poisson hypothesis, essentially this amounts to
assuming that, at any time, the service times of previously arrived customers, and
the future interarrival times are independent-something that is very reasonable
for packet transmission systems. In particular, the assumption holds if the arrival
process is Poisson and interarrival times and service times are independent.

The basic reason why an = pn is that the events {N(t) = n} and {An arrival
occurred just after t} are independent under our hypothesis. As a result, the con-
ditional probability in Eq. (3.27) equals the unconditional probability in Eq. (3.28).
For a more formal proof, let A(t, t + 6) be the event that an arrival occurs in the
interval (t, t + 6). Let

pn(t) = P {N(t) = n} (3.30)

an(t) = P {N(t) = nlan arrival occurred just after time t} (3.31)

We have, using Bayes' rule,

an(t) = lim P {N(t) = njA(t, t + 6)}
6---0

= P {N(t) = n, A(t, t + 6)}
6-o P{A(t, t + 6)} (3.32)

P {A(t, t + 6)IN(t) = n} P {N(t) = n}
6-.o P{A(t, t + 6)}

By assumption, the event A(t, t + 6) is independent of the number in the system at
time t. Therefore,

P{A(t, t + 6)IN(t) = n} = P{A(t, t + 6)}

and we obtain from Eq. (3.32)

an(t) = P {N(t) = n} = pn(t)

Taking the limit as t --+ oo, we obtain Eq. (3.29).
Thus, we have shown that the probability of an arrival finding n customers

in the system equals the (unconditional) probability of n in the system. This is
true at every time instant as well as in steady state regardless of the service time
distribution. We can summarize this by saying that when the arrival process is
Poisson, an arriving customer finds the system in a "typical" state.

As an example of what can happen if the arrival process is not Poisson, sup-
pose that interarrival times are independent and uniformly distributed between two
and four seconds, while customer service times are all equal to one second. Then
an arriving customer always finds an empty system. On the other hand, the aver-
age number in the system as seen by an outside observer looking at a system at a
random time is 1/3.
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For a similar example where the arrival process is Poisson but the service
times of customers in the system and the future arrival times are correlated, con-
sider a packet transmission system where packets arrive according to a Poisson
process. The transmission time of the nth packet equals one half the interarrival
time between packets n and n + 1. A packet upon arrival finds the system empty.
However, the average number in the system, as seen by an outside observer looking
at the system is easily seen to be 1/2.

3.3.3 Occupancy Distribution Upon Departure

Let us consider the distribution of the number of customers in the system just after
a departure has occurred, i.e., the probabilities

dn(t) = P{N(t) = n j a departure occurred just before time t}

The corresponding steady-state values are denoted

d = lim dn (t), n = 0, 1,...

It turns out that
dn=an, n=0,1,...

under very general assumptions-the only requirement essentially is that the system
reaches a steady state with all n having positive steady-state probabilities, and that
N(t) changes in unit increments. (These assumptions certainly hold for a stable
M/M/1 system (p < 1), but they also hold for most stable single-queue systems of
interest.) For any sample path of the system and for every n, the number in the
system will be n infinitely often (with probability one). This means that for each
time the number in the system increases from n to n+ 1 due to an arrival, there will
be a corresponding future decrease from n + 1 to n due to a departure. Therefore,
in the long run, the proportion of transitions from n to n + 1 out of transitions
from any k to k + 1 equals the proportion of transitions from n + 1 to n out of
transitions from any k + 1 to k which implies dn = an. Therefore, in steady state,
the system appears statistically identical to an arriving and a departing customer.
When arrivals are Poisson, we saw earlier that an = p.; so, in this case, both an
arriving and a departing customer in steady state see a system that is statistically
identical to the one seen by an observer looking at the system at a random time.

3.4 THE M/M/m, M/M/oo, AND M/M/m/m SYSTEMS

We consider now a number of queueing systems that are similar to M/M/1 in that
the arrival process is Poisson, the service times are independent, exponentially dis-
tributed, and independent of the interarrival times. Because of these assumptions,
these systems can be modelled with continuous- or discrete-time Markov chains.

__



Sec. 3.4 The M/M/m, M/M/oo, and M/M/m/m Systems

Figure 3.8 Discrete-time Markov chain for the M/M/m system.

From the corresponding state transition diagram, we can derive a set of equations
that can be solved for the steady-state occupancy probabilities. Application of
Little's Theorem then yields the average delay per customer.

3.4.1 M/M/m: The m-Server Case

The M/M/m queueing system is identical to the M/M/1 system except that there
are m servers (or channels of a transmission line in a data communication context).
A customer at the head of the queue is routed to any server that is available. The
corresponding state transition diagram is shown in Fig. 3.8.

By writing down the equilibrium equations for the steady-state probabilities
Pn and taking 6 -- 0, we obtain

Apn-i =n pn, n < m

Apn- i=mppn, n> m

From these equations, we obtain

(mp)n n

Po , n<m

Pn ={- (3.33)
mmp n

Po M , n>m

where p is given by
A

p =-- < 1 (3.34)
mrn

We can calculate Po using Eq. (3.33) and the condition E-=o Pn = 1. We obtain

PO =+ [ 1 (mp)n (mp)" 1]
n! m! mn-m

and, finally,

S= (mp) (mp)m

1- AO 1 -X6- 1-16-2;6 1-• --(m- 1)M 1
-

rs m6 1- - X6 -m p6
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The probability that an arrival will find all servers busy and will be forced to
wait in queue is

P{Queueing} = pn

n=m00 PommP"- Po(mp) m  0 n-M
m! m!.

and, finally,

PQ •P{Queueing} = PO(mP)m (3.36)
m!(1 - p)

where Po is given by Eq. (3.35). This equation is known as the Erlang C formula
and is in wide use in telephony. (Denmark's A. K. Erlang is viewed as the foremost
pioneer of queueing theory.)

The expected number of customers waiting in queue (not in service) is given
by

n=O

Using Eq. (3.33), we obtain

NQ = n mmpm+n mp( )m
NQ= nPo m! m! - np

n=O n=O

Using Eq. (3.36) and the equation (1 - p) ,' 0 npn = p (1 - p) encountered in the
M/M/1 system analysis, we finally obtain

NQ = P P (3.37)

Note that
NQ p
PQ l-p

represents the expected number found in queue by an arriving customer conditioned
on the fact that he is forced to wait in queue, and is independent of the number
of servers for a given p = A/mp. This suggests in particular that, as long as there
are customers waiting in queue, the queue size of the M/M/m system behaves
identically as in an M/M/1 system with service rate mp--the aggregate rate of the
m servers. Some thought shows that indeed this is true in view of the memoryless
property of the exponential distribution.

Using Little's Theorem and Eq. (3.37), we obtain the average time W a cus-
tomer has to wait in queue:

W = Q pPQ (3.38)
A=A1- p)

·_
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The average delay per customer is, therefore,

1 1 pPQ

A A A(1 - p)

and, using p = A/mp, we finally obtain

1 1 PQT = +W= 1 + PQ (3.39)
A U mU - A

Using Little's Theorem again, the average number of customers in the system is

A APQ
N=AT= -+

,u mU -A

and, using p = A/mp, we obtain

PPQN =mp + P
1-p

Example 9: Using one vs. using multiple channels in statis-
tical multiplexing

Consider a communication link serving m independent Poisson traffic streams with
rate A/m each. Suppose that the link is divided into m separate channels with one
channel assigned to each traffic stream. However, if a traffic stream has no packet
awaiting transmission, its corresponding channel is used to transmit a packet of
another traffic stream. The transmission times of packets on each of the channels
are exponentially distributed with mean 1/np. The system can be modeled by the
same Markov chain as the M/MI/m queue. Let us compare the average delays per
packet of this system, and an MIMI1 system with the same arrival rate A and
service rate mu (statistical multiplexing with one channel having m times larger
capacity). In the former case, the average delay per packet is given by Eq. (3.39)

1 PQT= -+
p mU -A

while in the latter case, the average delay per packet is

1 PQ
T= -+mp mp - A

where PQ and PQ denote the queueing probability in each case. When p < 1
(lightly loaded system) we have PQ - 0, PQ - 0 and

T

T
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When p is only slightly less than 1, we have PQ 1, P --- 1, 1/p < 1/(mp - A)
and

T
T--

Therefore, for a light load, statistical multiplexing with m channels produces a delay
almost m times larger than the delay of statistical multiplexing with the m channels
combined in one (about the same as time- and frequency-division multiplexing). For
a heavy load, the ratio of the two delays is close to one.

3.4.2 M/M/oo: Infinite-Server Case

In the limiting case where m = oo in the M/M/m system, we obtain from Fig. 3.8

APn-1=nnp,n, n=1,2,...

so

Pn =- PO ( , n = 1,2,...
p n!

From the condition E' =o P = 1, we obtain

Po= [1 +-1

=e-./;

so, finally,
Pn = , n = 0,1,...

n!

Therefore, in steady state, the number in the system is Poisson distributed with
parameter A/p. The average number in the system is

N=

By Little's Theorem, the average delay is N/A or

1

This last equation can also be obtained by simply arguing that in an M/M/oo
system, there is no waiting in queue, so T equals the average service time 1/p. It
can be shown that the number in the system is Poisson distributed even if the service
time distribution is not exponential, i.e., in the M/G/oo system (see Prob. 3.37).

Chap. 3
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Example 10: The quasistatic assumption

It is often convenient to assume that the external packet traffic entering a subnet
node and destined for some other subnet node can be modeled by a stationary
stochastic process that has a constant bit arrival rate (average bits/sec). This ap-
proximates a situation where the arrival rate changes slowly with time and consti-
tutes what we refer to as the quasistatic assumption.

When there are only a few active sessions (i.e., user pairs) for the given
origin-destination pair, this assumption is seriously violated since the addition or
termination of a single session can change the total bit arrival rate by a substantial
factor. When, however, there are many active sessions, each with a bit arrival rate
that is small relative to the total, it seems plausible that the quasistatic assump-
tion is approximately valid. The reason is that session additions are statistically
counterbalanced by session terminations, with variations in the total rate being rel-
atively small. As analytical substantiation, let us assume that sessions are generated
according to a Poisson process with rate A, and terminate after a time which is expo-
nentially distributed with mean 1/p. Then the number of active sessions n evolves
like the number of customers in an M/M/oo system, i.e., is Poisson distributed
with parameter A/p in steady-state. In particular, the mean and standard deviation
of n are

N = E {n} = A/,p

n = [E {(n-N)2}]' / 2 = (A=/p) /

Suppose the ith active session generates traffic according to a stationary stochastic
process having a bit arrival rate yi bits/sec. Assume that the rates yi are inde-
pendent random variables with common mean E{}i) = r, and second moment
8- = E{••y}. Then the total bit arrival rate for n active sessions is the random
variable f = En -i, which has mean

F = E{f} = (A/p)r

The standard deviation of f, denoted of, can be obtained by writing

SE{(ni 2 F2

and carrying out the corresponding calculations (Prob. 3.21). The result is

af = (Ah)s-Y

Therefore, we have
aof/F = (sy/r)(p/Ap)/ 2  (3.40)

Suppose now that the average bit rate r of a session is small relative to the total
F, i.e., a "many-small-sessions assumption" holds. Then, since r/F = p/A, we
have that u/A is small. If we reasonably assume that s./r has a moderate value,
it follows from Eq. (3.40) that oafF is small. Therefore, the total arrival rate f is
approximately constant thereby justifying the quasistatic assumption.
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Figure 3.9 Discrete-time Markov chain for the M/M/m/m system.

3.4.3 M/M/m/m: The m-Server Loss System

This system is identical to the M/MI/m system except that if an arrival finds all m
servers busy, it does not enter the system and is lost-a model that is in wide use
in telephony. (The last m in the M/M/m/m notation indicates the limit on the
number of customers in the system.) In data networks, it can be used as a model
where arrivals correspond to requests for virtual circuit connections between two
nodes and the number of virtual circuits allowed is m. The average service time
1/p is then the average duration of a virtual circuit conversation.

The corresponding state transition diagram is shown in Fig. 3.9. We have

APn-l =nPPn, n=1,2,...,m

so
pn=WPO •.1 n=- 1,2,....,m

Solving for Po in the equation E-'a pn = 1, we obtain

-1

The probability that an arrival will find all m servers busy and will therefore be
lost is

(A/#)'/m!
Pm 

M o(A/p)"/n!

This equation is known as the Erlang B formula. It can be shown to hold even if
the service time probability distribution is arbitrary, i.e., for an M/G/m/m system
(see [Ros83], p. 170).

3.5 THE M/G/1 SYSTEM

Consider a single-server queueing system where customers arrive according to a
Poisson process with rate A, but the customer service times have a general dis-
tribution-not necessarily exponential as in the M/M/1 system. Suppose that

Chap. 3
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customers are served in the order they arrive and that X, is the service time of
the ith arrival. We assume that the random variables (X1 ,X 2 ,...) are identically
distributed, mutually independent, and independent of the interarrival times.

Let
1

X = EX} = - = Average service time
/i

X 2 = E{X 2 } = Second moment of service time

Our objective is to derive and understand the Pollaczek-Khinchin (P-K) for-
mula:

AX 2

W = (3.41)
2(1 - p)

where W is the expected customer waiting time in queue and p = A/p = AX. Given
Eq. (3.41), the total waiting time, in queue and in service, is

AX 2

T = X + (3.42)
2(1 - p)

Applying Little's formula to W and T, we get the expected number of customers
in the queue NQ and the expected number in the system N

A2X 2

NQ = 2(1 - p) (3.43)

N = p + (3.44)
2(1 - p)

For example, when service times are exponentially distributed, as in the M/M/1
system, we have X 2 = 2/p 2 , and Eq. (3.41) reduces to the formula (see subsection
3.3.2)

W P (M/M/1 )
(1 - p)

When service times are identical for all customers (the MID/1 system, where D
means deterministic), we have X 2 = 1/L 2, and

W= 2(1 - ) (M/D/1) (3.45)

Since the M/D/1 case yields the minimum possible value of X 2 for given y,
it follows that the values of W, T, NQ, and N for an MID/1 queue are lower
bounds to the corresponding quantities for an M/G/1 queue of the same A and p.
It is interesting to note that W and NQ for the MID/1 queue are exactly one half
their values for the MIM/1 queue of the same A and p. The values of T and N
for MID/1, on the other hand, range from the same as M/M/1 for small p to one
half of MIM/1 as p approaches 1. The reason is that the expected service time is
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the same in the two cases, and, for p small, most of the waiting occurs in service
whereas, for p large, most of the waiting occurs in the queue.

We provide a proof of the Pollaczek-Khinchin formula based on the concept of
the mean residual service time. This same concept will prove useful in a number of
subsequent developments. For example, M/G/1 queues with priorities and reser-
vation systems are analyzed later; then part of the service time is occupied with
sending packets (i.e., serving customers), and part with sending control information
or making reservations for sending the packets.

Denote

Wi : The waiting time in queue of the izh customer.

Ri : The residual service time seen by the it h customer. By this we mean that
if customer j is already being served when i arrives, Ri is the remaining
time until customer j's service time is complete. If no customer is in
service (i.e., the system is empty when i arrives), then Ri is zero.

Xi : The service time of the i t h customer.

Ni : The number of customers found waiting in queue by the ith customer
upon arrival.

We have
i-1

W 1=Ri+ x
j=i--Ni

By taking expectations and using the fact that the random variables Ni and
Xi-1,... ,Xi-N, are independent we have

E{W} = E{XR} + E iN E{XjlN}} = E{R.} +XE{N 1 }

Taking the limit as i - oo we obtain

W = R + -N (3.46)

where
R : Mean residual time, defined as R = limi,o E{Ri}.

In Eq. (3.46) (and throughout this section) all long-term average quantities should
be viewed as limits when time or customer index increase to infinity. Thus, W,
R, and NQ are limits (as i - oo) of the average waiting time, residual time,
and number found in queue, respectively, corresponding to the i tb customer. We
assume that these limits exist, and this is true of almost all systems of interest to us
provided A < p. Note that in Eq. (3.46) the average number in queue NQ and the
mean residual time R as seen by an arriving customer are also equal to the average
number in queue and mean residual time seen by an outside observer at a random
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time. This is due to the Poisson character of the arrival process, which implies that
the occupancy distribution upon arrival is typical (see subsection 3.3.2).

By Little's Theorem, we have

NQ = AW

and by substitution in Eq. (3.46), we obtain

W = R + pW (3.47)

where p = A/p is the utilization factor; so, finally,

W = (3.48)
1-p

We can calculate R by a graphical argument. In Fig. 3.10 the residual service
time r(r), (i.e., the remaining time for completion of the customer in service at
time r) is plotted as a function of r. Note that when a new service of duration X
begins, r(r) starts at X and decays linearly for X time units. Consider a time t for
which r(t) = 0. The time average of r(r) in the interval [0, t] is

r(r) dr = X1 jXt (3.49)
i=1

where M(t) is the number of service completions within [0, t], and Xi is the service
time of the ith customer. We can also write this equation as

1 f 1 M(t) EM ) X 2

1 r(r) dr = i= M (3.50)
t 0I 2 t M(t)

and, assuming the limits below exist, we obtain

lim t 1 M(t) MM__) X2

lim r(rd - lim • lim - (3.51)t-o t J ' 2 t-.oo t -oo M(t)

The two limits on the right are the time averages of the departure rate (which
equals the arrival rate) and the second moment of the service time, respectively,
while the limit on the left is the time average of the residual time. Assuming that
time averages can be replaced by ensemble averages, we obtain

1
R= -XX -  (3.52)

2
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Figure 3.10 Derivation of the mean residual service time. During
period [0, t], the time average of the residual service time r(r) is

1 I1M 1 1 M(t) -M(t ) X
2

- r(T) dr = I I X,2 = - i=1
r() dr • 2 t M(t)

where Xi is the service time of the ith customer, and M(t) is the number of
service completions in [0, t]. Taking the limit as t -- oo and equating time and
ensemble averages we obtain the mean residual time R = (1/2))X 2

The Pollaczek-Khinchin formula,

,X 2

W = (3.53)
2(1 - p)

now follows by combining Eqs. (3.48) and (3.52). Our derivation was based on two
assumptions: (a) the existence of the steady-state averages W, R, and No; and
(b) the equality (with probability one) of the long-term time averages appearing
in Eq. (3.51) with the corresponding ensemble averages. These assumptions can
be justified by careful applications of the law of large numbers, but the details
are beyond the scope of this text. However, these are natural assumptions for the
systems of interest to us, and we will base similar derivations on graphical arguments
and interchange of time averages with ensemble averages without further discussion.

One curious feature of Eq. (3.53) is that an M/G/1 queue can have p < 1 but
infinite W if the second moment of the service distribution is oo. What is happening
in this case is that a small fraction of customers have incredibly long service times.
When one of these customers is served, an incredible number of arrivals are queued

___
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and delayed by a significant fraction of that service time. Thus, the contribution
to W is proportional to the square of the service time, leading to an infinite W if
X 2 is infinite.

The above derivation of the P-K formula assumed that customers were served
in order of arrival, i.e., that the number of customers served between the ith arrival
and service is just the number in queue at the it

h arrival. It turns out, however,
that this formula is valid for any order of servicing customers as long as the order
is determined independently of the required service time. To see this, suppose that
the i t h and jth customers are both in the queue and that they exchange places.
The expected queueing time of customer i (over the service times of the customers
in queue) will then be exchanged with that for customer j, but the average, over all
customers, is unchanged. Since any service order can be considered as a sequence of
reversals in queue position, the P-K formula remains valid (see also Problem 3.16).

To see why the P-K formula is invalid if the service order can depend on service
time, consider a queue with two customers requiring 10 and 2 units of service time
respectively. Assuming that the server becomes available at time 0, serving the
first customer first results in one customer starting service at time 0 and the other
at time 10. Serving the second customer first results in one customer starting at
time 0 and the other at time 2. Thus, the average queueing time over the two
customers is 5 in the first case and 1 in the second case. Clearly, queueing time is
reduced by serving customers with small service time first. For this situation, the
derivation of the P-K formula breaks down at Eq. (3.46) since the packets that will
be transmitted before a newly arriving packet no longer have a mean service time
equal to 1//.

Example 11: Delay Analysis of an ARQ System

Consider a goback n ARQ system such as the one discussed in section 2.4. Assume
packets are transmitted in frames that are one time unit long, and there is a maxi-
mum wait for an acknowledgement of n - 1 frames before a packet is retransmitted
(see Fig. 3.11). In this system packets are retransmitted for two reasons:

1. A given packet transmitted in frame i might be rejected at the receiver
due to errors, in which case the transmitter will transmit packets in
frames i + 1, i + 2,..., i + n - 1, (if any are available), and then go
back to retransmit the packet in frame i + n.

2. A packet transmitted in frame i might be accepted at the receiver but
the corresponding acknowledgement (in the form of the receive number)
might not have arrived at the transmitter by the time the transmission
of packet i + n - 1 is completed. This can happen due to errors in the
return channel, large propagation delays, long return frames relative to
the size of the goback number n, or a combination thereof.

We will assume (somewhat unrealistically) that retransmissions occur only
due to #1 above, and that a packet is rejected at the receiver with probability p
independently of other packets.

Consider the case where packets arrive at the transmitter according to a Pois-
son process with rate A. It follows that the time interval between start of the first
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Start of effective service time
Effective service time Effective service time of packet 4
of packet 1 of packet 2

1 1 2 1 n 1 2 + n +1 '1 2 3  4  n* n+3 4

Error Final transmission Error Final transmission Correct Error Error
of packet 1 of packet 2

Packets Transmitted

Figure 3.11 Illustration of the effective service times of packets
in the ARQ system of Ex. 11. For example, packet 2 has an effective
service time of n + 1 because there was an error in the first attempt to
transmit it following the last transmission of packet 1, but no error in
the second attempt.

transmission of a given packet after the last transmission of the previous packet, and
end of the last transmission of the given packet is 1+ kn time units with probability

(1 - p)pk (this corresponds to k retransmissions following the last transmission of
the previous packet--see Fig. 3.11). Thus, the transmitter's queue behaves like an
M/G/1 queue with service time distribution given by

P{X=l1+kn}=(1-p)pk, k=0,1,...

The first two moments of the service time are

X= Z (1+kn)(1-p)pk =(-p) pk n k
k=O 0 k=O

= (1 + kn)'(1 _p)pk
k=O

=(1-p) ( Pk + 2n kpk + n2 k2pk

k=0 k= k=O

We now note that E"=o pk = 1/(l-p), =o kpk = p/(1-p)2 , and Eoo k2pk
= (p + p2 )/(1 - p) . (The first sum is the usual geometric series sum, while the
other two sums are obtained by differentiating the first sum twice.) Using these

__
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formulas in the equations for X and X 2 above, we obtain

+ npX= +
1-p

2- +2np n2 (p + p 2 )

1 - p (1 - p) 2

The P-K formula gives the average packet time in queue and in the system (up to
the end of the last transmission):

AX 2

W=
2(1- AX)

T=X+W

3.5.1 M/G/1 Queues with Vacations

Suppose that at the end of each busy period, the server goes on "vacation" for some
random interval of time. Thus, a new arrival to an idle system, rather than going
into service immediately, waits for the end of the vacation period (see Fig. 3.12).
If the system is still idle at the completion of a vacation, a new vacation starts
immediately. For data networks, vacations correspond to the transmission of various
kinds of control and record-keeping packets when there is a lull in the data traffic;
other applications will become apparent later.

Let V1, V2,... be the durations of the successive vacations taken by the server.
We assume that V1, V2,... are independent and identically distributed (IID) random
variables, also independent of the customer interarrival times and service times.
As before, the arrivals are Poisson and the service times are IID with a general
distribution. A new arrival to the system has to wait in the queue for the completion
of the current service or vacation and then for the service of all the customers
waiting before it. Thus, Eq. (3.48) is still valid (i.e., W = R/(1 - p)), where now R
is the mean residual time for completion of the service or vacation in process when
the ith customer arrives.

The analysis of this new system is the same as that of the P-K formula except
that vacations must be included in the graph of residual service times r(r) (see
Fig. 3.13). Let M(t) be the number of services completed by time t and L(t) be
the number of vacations completed by time t. Then (as in Eq. (3.49)), for any t
where a service or vacation is just completed, we have

1 t 1M(t) L(t)
-f (r) dr ==CVx2 V' (3.54)

i=1 i=1

As before, assuming that a steady state exists, M(t)/t approaches A with
increasing t, and the first term on the right side of Eq. (3.54) approaches AX2 /2
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Packet arrivals

x, x x v2 V3 X5 V4 X5::::::::'':'::':'':'::'V ,
Busy period

Vacations

Time

Figure 3.12 An M/G/I1 system with vacations. At the end of a busy
period, the server goes on vacation for time V with first and second moments
V and VY , respectively. If the system is empty at the end of a vacation, the
server takes a new vacation. An arriving customer to an empty system must
wait until the end of the current vacation to get service.

X, X3

X,

Figure 3.13 Residual service times for an M/G/1 system with vacations.
Busy periods alternate with vacation periods.
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as in the derivation of the P-K formula (cf. Eq. (3.52)). For the second term, note
that as t - oo, the fraction of time spent serving customers approaches p, and thus
the fraction of time occupied with vacations is 1 - p. Assuming time averages can
be replaced by ensemble averages we have t(1 - p)/L(t) -+ V with increasing t,
and thus the second term in Eq. (3.54) approaches (1- p)V2/(2V), where Vand V 2

are the first and second moments of the vacation interval, respectively. Combining
this with W = R/(1 - p), and assuming equality of the time and ensemble averages
of R, we get

AXZ V 2

W - + (3.55)2(1- p) 2V (3.55)
as the expected waiting time in queue for an M/G/1 system with vacations.

If we look carefully at the derivation of Eq. (3.55), we see that the mutual
independence of the vacation intervals is not required (although the time and en-
semble averages of the vacation intervals must still be equal) and the length of a
vacation interval starting at time t need not be independent of the already com-
pleted service times or arrival times. Naturally, with this kind of dependence, it
becomes more difficult to calculate V and V 2 , as these quantities might be functions
of the underlying M/G/1 process.

Example 12: Frequency- and time-division multiplexing
on a slot basis

We have m traffic streams of equal length packets arriving according to a Poisson
process with rate A/m each. If the traffic streams are frequency-division multiplexed
on m subchannels of an available channel, the transmission time of each packet is
m time units. Then, each subchannel can be represented by an MID/1 queueing
system and, by Eq. (3.45), with p = A, p = I/m, the average queueing delay per
packet is

WFDM 2(1 -(3.56)
2(1- -)

Consider the same FDM scheme with the difference that packet transmissions
can start only at times m, 2m, 3m,..., i.e., at the beginning of a slot of m time
units. We call this scheme slotted frequency-division multiplexing (SFDM), and
note that it can be viewed as an M/D/1 queue with vacations. When there are no
packets in the queue for a given stream at the beginning of a slot, the server takes
a vacation for one slot, or m time units. Thus, V = m, V 2 = m 2 , and Eq. (3.55)
becomes

m
WSFDM = WFDM + - (3.57)

Finally, consider the case where the m traffic streams are time-division multi-
plexed in a scheme whereby the time axis is divided in m-slot frames with one slot
dedicated to each traffic stream (see Fig. 3.14). Each slot is one time unit long and
can carry a single packet. Then, if we compare this TDM scheme with the SFDM
scheme, we see that the queue for a given stream in TDM is precisely the same as
the queue for SFDM, and

m m
WTDM = WSFDM = WFDM + 2 2(1 -(3.58)

2 2(1 - A)
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Stream 1 Stream 2 Stream 3 Stream 4

I I I I I I I I I -

t

Frame k Frame (k + 1)
One time unit per slot

Figure 3.14 TDM with m = 4 traffic streams.

If we now look at the total delay for TDM, we get a different picture, since
the service time is 1 unit of time rather than m units as in SFDM. By adding the
service times to the queueing delays, we obtain

TFDM = m+ - A
2(1 - A)

TSFDM = TFDM +

m m
TTrM = 1 + 2(1"- A) = TFDM - -- 1 (3.59)

Thus, the customer's average total delay is more favorable in TDM than in FDM
(assuming m > 2). The longer average waiting time in queue for TDM is more than
compensated by the faster service time. Note that the analysis above is generalized
in Problem 3.22.

3.5.2 Reservations and Polling

Organizing transmissions from several packet streams into a statistical multiplexing
system requires some form of scheduling. In some cases, this scheduling is naturally
and easily accomplished; in other cases, however, some form of reservation or polling
system is required.

A typical situation is one whereby there is a communication channel that
can be accessed by several spatially separated users; however, only one user can
transmit successfully on the channel at any one time. (This is called a multiaccess
channel, and will be treated extensively in Chapter 4.) The communication resource
of the channel can be divided over time into a portion used for packet transmissions
and another portion used for reservation or polling messages that coordinate the
packet transmissions. In other words, the time axis is divided into data intervals,
where actual data is transmitted, and reservation intervals, used for scheduling
future data. For uniform presentation, we use the term "reservation" even though
"polling" may be more appropriate to the practical situation.

Chap. 3



Sec. 3.5 The M/G/1 System
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Reservation and data Reservation and data Reservation and data
intervals for user 1 intervals for user 2 intervals for user 3 Reservation inte

Transmission interval
for user 1

1J 2 [1 i 1 2 3 I I

Arrival interval for user 1 in an exhaustive system.

Arrival interval for user 1 in a partially gated system

Arrival interval for user 1 in a gated system

a

rvals

Packets arriving in the arrival interval shown are
transmitted in the transmission interval shown

Figure 3.15 A reservation or polling system with three users. In the
exhaustive version, a packet of a user that arrives during the user's reservation
or data interval is transmitted in the same data interval. In the partially gated
version, a packet of a user arriving during the user's data interval must wait
for an entire cycle and be transmitted during the next data interval of the
user. In the fully gated version, packets arriving during the user's reservation
interval must also wait for an entire cycle. The figure shows, for the three
systems, the association between the interval in which a packet arrives and
the interval in which the packet is transmitted.

We will consider m traffic streams (also called users), and assume that each
data interval contains packets of a single user. Reservations for these packets are
made in the immediately preceding reservation interval. All users are taken up in
cyclic order (see Fig. 3.15). There are several versions of this system differing in the
rule for deciding which packets are transmitted during the data interval of each user.
In the gated system, the rule is that only those packets that arrived prior to the
user's preceding reservation interval are transmitted. By contrast, in the exhaustive
system, the rule is that all available packets of a user are transmitted during the
corresponding data interval, including those that arrived in this data interval or the
preceding reservation interval. An intermediate version, which we call the partially
gated system, results when the packets transmitted in a user's data interval are
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those that arrived up to the time this data interval began (and the corresponding
reservation interval ended). A typical example of such reservation systems is one
of the most common local area networks, the token ring. The users are connected
by cable in a unidirectional loop. Each user transmits the current packet backlog,
then gives the opportunity to a neighbor to transmit, and the process is repeated.
(A more detailed description of the token ring is given in Chapter 4.)

We assume that the arrival processes of all users are independent Poisson with
rate A/m, and that the first and second moments of the packet transmission times
are X = 1/p and X2 , respectively. The utilization factor is p = A/p. Interarrival
times and transmission times are, as usual, assumed independent. While we assume
that all users have identical arrival and service statistics, we allow the reservation
intervals of different users to have different statistics.

Single-User System

Our general line of analysis of reservation systems can be better understood in
terms of the special case where m = 1; so, we consider this case first. We may
also view this as a system where all users share reservation and data intervals.
Let Ve be the duration of the th reservation interval and assume that successive
reservation intervals are independent and identically distributed random variables
with first and second moments V and V 2 , respectively. We consider a gated system
and assume that the reservation intervals are statistically independent of the arrival
times and service durations. Finally, for convenience of exposition, we assume that
packets are transmitted in the order of their arrival. As in our derivation of the
P-K formula, expected delays and queue lengths are independent of service order
as long as service order is independent of service requirement (i.e., packet length).

Consider the ith data packet arriving at the system. This packet must wait
in queue for the residual time Ri until the end of the current packet transmission
or reservation interval. It must also wait for the transmission of the Ni packets
currently in the queue (this includes both packets for which reservations were al-
ready made in the last reservation interval and earlier arrivals waiting to make a
reservation). Finally, the packet must wait during the next reservation interval
Ve(i ), say, in which its reservation will be made (see Fig. 3.16). Thus, the expected
queueing delay for the it h packet is given by

E(W}I = E{Ri + E{N 1}/p + E{(Vt()) (3.60)

The similarity of this reservation system to the M/G/1 queue with vacations
should be noted. The only difference is that in the gated reservation system, a
reservation interval starts when all packets have been served from the previous
interval, whereas in the vacation system, a vacation interval starts when all previous
arrivals have been served. (In fact, the exhaustive version of this reservation system
is equivalent to the vacation system.) The time-average mean residual time for the
two systems is clearly the same (see Fig. 3.13), and is given by AX 2 /2+(1-p)V2 /2V.

_~_~___ __
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Transmission
Arrival time of ith packet

T Time
Transmission

Residual Waiting time Reservation of ith packet
time Ri  for N, packets interval V()i ends

ahead of packet
i in queue

Figure 3.16 Calculation of the average waiting time in the single-user
gated system. The expected waiting time E{Wi} of the ith packet is

E{Wi} = E{Ri} + E{Ni}/l + E{V(i,)}

The value of limi-co E {Ni}/p is pW in both systems, and finally the value of
limi.oo E{V(i)} is just V. Thus, from Eq. (3.60) the expected time in queue for
the single-user reservation system is

AX2  V2  V
W = - + + + (single user, gated) (3.61)

2(1 - p) 2V I -p

In the common situation where the reservation interval is a constant A, this sim-
plifies to

W= -X+A L p (3.62)
2(1 - p) 2  1 - p

There is an interesting paradox associated with Eq. (3.61). We have seen
that a fraction 1 - p of time is used on reservations. Since there is one reservation
interval of mean duration V per cycle, we can conclude that the expected cycle
length must be V/(1 - p) (Prob. 3.23 develops this result more carefully). The
mean queueing delay in Eq. (3.61) can be an arbitrarily large multiple of this mean
cycle length, which seems paradoxical since each packet is transmitted on the cycle
following its arrival. The explanation of this is that more packets tend to arrive in
long cycles than in short cycles, and thus mean cycle length is not representative of
the cycle lengths seen by arriving packets; this is the same phenomenon that makes
the mean residual service time used in the P-K formula derivation larger than one
might think (see also Problem 3.15).
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Transmission
Arrival time of ith packet
of ith packet starts

r Waiting time in queue Wi

Time
Residual
time Ri Transmission

of ith packet
Waiting time ends
for N, packets Duration Yi of
ahead of packet i reservation intervals

up to the data interval
where packet i is
transmitted

Figure 3.17 Calculation of the average waiting time in the multiuser system. The expected
waiting time E{Wj) of the i t h packet is

E{Wi} = E{R} + E{Ni}/p + E{Y4}

Multiuser System

Suppose that the system has m users, each with independent Poisson arrivals of
rate A/m. Again X and X 2 are the first two moments of the service time for

each user's packets. We denote by 7 and ,2, respectively, the first two moments
of the reservation intervals of user i. The service times and reservation intervals
are all independent. We number the users 0, 1,... ,m - 1 and assume that the
eth reservation interval is used to make reservations for user fmod(m) and the
subsequent (tth) data interval is used to send the packets corresponding to those
reservations.

Consider the i th packet arrival into the system (counting packets in order of
arrival, regardless of user). As before, the expected delay for this packet consists of
three terms: first, the mean residual time for the packet or reservation in progress;
second, the expected time to transmit the number Ni of packets that must be trans-
mitted before packet i; and third, the expected duration of reservation intervals (see
Fig. 3.17). Thus,

E{W}) = E{Ri} + E{N1 }/p + E{Y1 } (3.63)

where Yi is the duration of all the whole reservation intervals during which packet
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i must wait before being transmitted. The time average mean residual time is
calculated similarly as before, and is given by

AX2 (1 - p) Em V2
R= + - (3.64)

2 2 ~Em-1 Ve

The number of packets Ni that i must wait for is not equal to the number already in
queue, but the order of serving packets is independent of packet service time; thus,
each packet served before i still has a mean transmission time 1/p as indicated in
Eq. (3.63) and by Little's formula, the value of limi-oo E{Ni}/p is pW as before.
Letting Y = limi-,, E{Yi}, we can thus write the steady state version of Eq. (3.63)

W=R+pW+Y

or, equivalently,
R+Y

W = (3.65)
1-p

We first calculate Y for an exhaustive system. Denote

aej =E{fYi packet i arrives in user C's reservation or data

interval and belongs to user (i + j)mod(m)}

We have
(0, j=0

V(£+1)mod(m) + · + V(£+j)mod(m) , J > 0

Since packet i belongs to any user with equal probability 1/m, we have

E{Y I packet i arrives in user I's reservation or data interval}

m - a m- - V(_+j)mod(m) (3.66)
m mr =1 j=1

Since all users have equal data rate, the data intervals of all users have equal average
length in steady state. Therefore, in steady state, a packet will arrive during user
f's data interval with probability p/m, and during user g's reservation interval with

probability (1 - p) -/ o Vk ). Using this fact in Eq. (3.66) we obtain the

following equation for Y = limioo E {Y}

n-1 (L+ (1 - p)Ve ) -M
Y = i--I + m-1-V(t+j)mod(m)

e=0 ( .,k=O k '=

m- . M-1 m-Im-m-- (1-p) m - .
Pm m-

j  
E m- m-1V VV(et+j)mod(m)M " ZM(3Vk .67

j=1 _ =0 k= fk=0 j=1

(3.67)
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The last sum above can be written

m-1m-1 m-1 2 m-1

M Vl'v V (I+ j)m od(m)  2 21-=0
1=0 j=1 1=0 1=0

(To see this, note that the right side above is the sum of all possible products
VtVe, for t # o'. The left side is the sum of all possible terms (j/m)VIVI, and
[(m - j)/m]VtVt,, where j = I£ - ej and t # 5'.) Using this expression, and
denoting

1--1

V= - VI

1=0

as the reservation interval averaged over all users, we can write Eq. (3.67) as

1-'M (1 -, 1'
2

S pV(m - 1) (1 - p) (1 - p) t=o V
2 2 2mV

__(m _ ) (1p)E'•-,1V
2

(m - p)V (1 - p). (3.68)
2 2mV

Combining Eq. (3.64), (3.65), and (3.68), we obtain

AX 2  (m - p)V 1=o V V
W= + +

T2(1 - p) 2(1 - p) 2mV

Denoting

as the variance of the reservation intervals averaged over all users, we finally obtain

W AX ( - p)V + + (exhaustive) (3.69)
2(1 - p) 2(1 - p) 2V

The partially gated system is the same as the exhaustive except that if a packet
of a user arrives during a user's own data interval (an event of probability p/m in
steady state), it is delayed by an additional mV, the average sum of reservation
intervals in a cycle. Thus, Y is increased by pV in the preceding calculation, and
we obtain

W = + p)V+ - (partially gated) (3.70)
2(l - p) 2(l - p) 2V

Consider finally the fully gated system. This is the same as the partially gated
system except that if a packet of a user arrives during a user's own reservation

__
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interval (an event of probability (1 - p)/m in steady state), it is delayed by an
additional mV. This increases Y by an additional (1 - p)V and results in the
equation

AX2 (m + 2 - p)V ,VW -  + +p)V (gated) (3.71)
2(1 - p) 2(1 - p) 2V

In comparing these results with the single user system, consider the case where
the reservation interval is a constant A/im. Thus, A is the overhead or reservation
time for an entire cycle of reservations for each user, which is usually the appropriate
parameter to compare with A in Eq. (3.62). We then have (V = A/m, o. = 0)

A A 1 - p/m
W - 2 + 1-p/r (exhaustive) (3.72)

2(1 - p) 2 1 - p

AX2  Al 1 +p/mW = 2 - A' 1- / (partially gated) (3.73)
2 (1 - p) 2 1 -p

AX 2  A 1+(2 - p)/mr
W 2(l-p) + 2  1 ) (gated) (3.74)

It can be seen that delay is somewhat reduced in the multiuser case; essentially,
packets are delayed by roughly the same amount until the reservation time in all
cases but delay is quite small after the reservation in the multiuser case.

Limited Service Systems

We now consider a variation of the multiuser system whereby, in each user's data
interval, only the first packet of the user waiting in queue (if any) is transmitted
(rather than all waiting packets). We concentrate on the gated and partially gated
versions of this system, since an exhaustive version does not make sense. As before,
we have

E{Wi} = E{R)} + E{Ni}/p + E{Yi}

and by taking the limit as i -- oo, we obtain

W = R + pW + Y (3.75)

Here R is given by Eq. (3.64) as before. To calculate the new formula for Y for the
partially gated system, we argue as follows. A packet arriving during user e's data
or reservation interval will belong to any one of the users with equal probability
1/m. Therefore, in steady state, the expected number of packets waiting in the
individual queue of the user that owns the arriving packet, averaged over all users,
is limi,, E{N }/m = AW/m. Each of these packets causes an extra cycle of reser-
vations mV, so Y is increased by an amount AWV. Using this fact in Eq. (3.75),
we see that

R+Y
W= -I - p -AV
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where Y is the value of Y obtained earlier for the partially gated system without
the single-packet-per-data-interval restriction. Equivalently, we see from Eq. (3.65),
that the single-packet-per-data-interval restriction results in an increase of the av-
erage waiting time for the partially gated system by a factor

1-p

1-p- AV

Using this fact in Eq. (3.70), we obtain

XW 2Y  (m + p)V a (1 - p)W= + +
2(1 - p - AV) 2(1 - p - AV) 2V(1 - p - AV)

(limited service, partially gated) (3.76)

Consider now the gated version. Y1 is the same as for the partially gated
system except for an additional cycle of reservation intervals of average length mV
associated with the event where packet i arrives during the reservation interval of its
owner, and the subsequent data interval is empty. It is easily verified (Prob. 3.24)
that the latter event occurs with steady-state probability (1-p-AV)/m. Therefore,
for the gated system Y equals the corresponding value for the partially gated system
plus (1 - p - AV)V. This adds V to the value of W for the partially gated system,
and the average waiting time now is

AX2  (m + 2 - p - 2AV)V (1 - p)
2(1 - p - AV) 2(1 - p - AV) 2V(1 - p - AV)

(limited service, gated) (3.77)

Note that it is not enough that p = A/jp < 1 for W to be bounded; rather,
p + AV < 1 is required or, equivalently,

A (+V) <1

This is due to the fact that each packet requires a separate reservation interval of
average length V, thereby effectively increasing the average transmission time from
1/p to 1/p + V.

As a final remark, consider the case of a very large number of users m and
a very small average reservation interval V. An examination of the equation given
for the average waiting time W of every system considered so far shows that as
m -- oo, V -* 0, o/V -, 0, and mV --- A, where A is a constant, we have

AX 2  A
W-- p +

2(1 - p) 2(1 - p)
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It can be shown (Prob. 3.23) that A/(1 - p) is the average length of a cycle (m
successive reservation and data intervals). Thus, W approaches the M/G/1 average
waiting time plus one half the average cycle length.

3.5.3 Priority Queueing

Consider the M/G/1 system with the difference that arriving customers are divided
into n different priority classes. Class 1 has the highest priority, class 2 has the
second highest, and so on. The arrival rate and the first two moments of service
time of each class k are denoted Ak, Xk = 1/pk, and XY, respectively. The arrival
processes of all classes are assumed independent, Poisson, and independent of the
service times.

Nonpreemptive Priority

We first consider the nonpreemptive priority rule whereby a customer undergo-
ing service is allowed to complete service without interruption even if a customer
of higher priority arrives in the meantime. A separate queue is maintained for
each priority class. When the server becomes free, the first customer of the high-
est nonempty priority queue enters service. This priority rule is one of the most
appropriate for modeling packet transmission systems.

We will develop an equation for average delay for each priority class, which is
similar to the P-K formula and admits a similar derivation. Denote

Nt : Average number in queue for priority k

Wk : Average queueing time for priority k

Pk = Ak/pk : System utilization for priority k

R : Mean residual service time

We assume that the overall system utilization is less than one, i.e.,

P1 + P2 + ' -+- Pn < 1

When this assumption is not satisfied, there will be some priority class k such that
the average delay of customers of priority k and lower will be infinite while the
average delay of customers of priority higher than k will be finite. Problem 3.16
takes a closer look at this situation.

Similarly, as in the derivation of the P-K formula given earlier, we have for
the highest priority class

W1 = R + 1 N

Eliminating NI from this equation using Little's Theorem

NZ = AXW1
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we obtain
W1 = R + piW1

and, finally,
R

W1 = (3.78)
1 - pi

For the second priority class, we have a similar expression for the queueing
delay W2 except that we have to count the additional queueing delay due to cus-
tomers of higher priority that arrive while a customer is waiting in queue. This is
the meaning of the last term in the formula

W2 = R + -N+ -N + -AIW21
Al P2 11

Using Little's Theorem (NA = AkWk) we obtain

W2 = R + piW1 + p2W2 + pIW 2

which yields
R + p1W1W2=
1 - Pl - P2

Using the expression Wi = RI(1 - pl) obtained earlier, we finally have

R
W2 =

S(1 -p)(1 -P P2)

The derivation is similar for all priority classes k > 1. The formula for the
waiting time in queue is

R
Wk = (3.79)

(1 - P .- - Pk-1)(1 - PI .-- Pk)

The average delay per customer of class k is

1
Tk = - + Wk (3.80)

The mean residual service time R must now be derived. As in the earlier derivation
of the P-K formula (compare with Fig. 3.10) we have

R =: Ai 2  (3.81)

where X 2 denotes the second moment of service time averaged over all priority
classes. In particular,

Y1- Y2- + +"2
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Substitution in Eq. (3.81) yields

R=1 AiX: (3.82)
i=1

The average waiting time in queue and the average delay per customer for each
class is obtained from Eqs. (3.79), (3.80), and (3.82)

W = = (3.83)
2(1 - p -... - pk-1)(1 - p -l . . - Pk)

Tk = - + Wk
Ak

Note that it is possible to affect the average delay per customer by choosing
the priority classes appropriately. It is generally true that average delay tends
to be reduced when customers with short service times are given higher priority.
(For an example from common experience, consider the supermarket practice of
having special checkout counters for customers with few items. A similar situation
can be seen in copying machine waiting lines, where people often give priority to
others that need to make just a few copies.) An analytical substantiation can be
obtained by considering a nonpreemptive system and two customer classes A and
B with respective arrival and service rates AA,1 A, and AB, JPB. A straightforward
calculation using the formulas above shows that if PA > JB, then the average delay
per customer (averaged over both classes)

AATA + BTB
T=

,A + AB

is smaller when A is given priority over B than when B is given priority over A.
For related results, see Prob. 3.19.

The analysis given above does not extend easily to the case of multiple servers,
primarily because there is no simple formula for the mean residual time. If, however,
the service times of all priority classes are identically and exponentially distributed,
there is a convenient characterization of R. Equation (3.79) then yields a closed-
form expression for the average waiting times Wk (see Prob. 3.17).

Preemptive Resume Priority

One of the features of the nonpreemptive priority rule is that the average delay of
a priority class depends on the arrival rate of lower priority classes. This is evident
from Eq. (3.83) and is due to the fact that a high priority customer must wait for
a lower priority customer already in service. This dependence is not present in
the preemptive resume priority discipline, whereby service of a customer is inter-
rupted when a higher priority customer arrives, and is resumed from the point of
interruption once all customers of higher priority have been served.
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As we consider the calculation of Tk, the average time in the system of priority
k customers, we should keep in mind that the presence of customers of priorities
k + 1 through n does not affect this calculation. Therefore, we can treat each
priority class as if it were the lowest in the system.

The system time Tk consists of three terms. The first is the customer's average
service time 1/pk. The second is the average time required, upon arrival of a
priority k customer, to service customers of priority 1 to k already in the system,
i.e., the average unfinished work corresponding to priorities 1 through k. This term
is equal to the average waiting time in the corresponding, ordinary M/G/1 system
(without priorities), where the customers of priorities k + 1 through n are neglected,
i.e., (cf. Eq. (3.48))

Rk

1 -p- -... -Pk

where Rk is the mean residual time

k

Rk = = 2 (3.84)

This follows since, at all times, the unfinished work (sum of remaining service times
of all customers in the system) of an M/G/1-type system is independent of the
priority discipline of the system. This is true of all queueing systems that are con-
servative in the sense that the server is always busy when the system is nonempty,
and customers leave the system only after receiving their required service. The
third term in the expression for Tk is the average waiting time for customers of
priorities 1 through k - 1 who arrive while the customer of class k is in the system.
This term is

k-1 k-1

= 1 f  i= 1

for k > 1, and is zero for k = 1. Collecting these terms, we obtain the equation

T = 1 Rk (Iý Tk (3.85)
T k 1 - P1- ...- Pk i=1

The final result is, for k = 1,

T = (1/#1)(1 - pl) + R1  (3.86)
1 - pi

and, for k > 1,

Tk (11k)(1 - Pk) + Rk (3.87)
(1 - Pl -... - Pk-1)(1- P - . --- Pk)

_·_1_1~
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, packets/sec (

Figure 3.18 Two equal capacity transmission lines in tandem. If all
packets have equal length, there is no queueing delay in the second queue.

where Rk is given by Eq. (3.84). As for the nonpreemptive system, there is no easy
extension of this formula to the case of multiple servers unless the service times of
all priority classes are identically and exponentially distributed (see Prob. 3.17).

3.6 NETWORKS OF TRANSMISSION LINES

In a data network, there are many transmission queues that interact in the sense
that a traffic stream departing from one queue enters one or more other queues,
perhaps after merging with portions of other traffic streams departing from yet
other queues. Analytically, this has the unfortunate effect of complicating the
character of the arrival processes at downstream queues. The difficulty is that
the packet interarrival times become strongly correlated with packet lengths once
packets have traveled beyond the first queue at their entry point in the network.
As a result it is impossible to carry out a precise and effective analysis comparable
to the one provided for queueing systems such as M/M/1, M/G/1, etc.

As an illustration of the phenomena that complicate the analysis, consider two
transmission lines of equal capacity in tandem, as shown in Fig. 3.18. Assume that
Poisson arrivals of rate A packets/sec enter the first queue, and that all packets have
equal length. Therefore, the first queue is MID/1 and the average packet delay
there is given by the Pollaczek-Khinchin formula. However, at the second queue,
the interarrival times must be greater than or equal to 1/p (the packet transmis-
sion time). Furthermore, because the packet transmission times are equal at both
queues, each packet arriving at the second queue will complete transmission at or
before the time the next packet arrives, so there is no waiting at the second queue.
Therefore, a delay model based on Poisson assumptions is totally inappropriate for
the second queue.

Consider next the case of the two tandem transmission lines where packet
lengths are exponentially distributed, and are independent of each other as well as
of the interarrival times at the first queue. Then the first queue is M/M/1. The
second queue, however, cannot be modeled as M/M/1. The reason is, again, that
the interarrival times at the second queue are strongly correlated with the packet
lengths. To see this, consider a busy period at the first queue where several packets
are transmitted one after the other. The interarrival time at the second queue
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XP2

Figure 3.19 A network of transmission lines. The total arrival rate AXj
at a link (i,j) is equal to the sum of arrival rates zp of all packet streams p
traversing the link.

between two such packets equals the transmission time of the second packet. As
a result, long packets will typically wait less time at the second queue than short
packets, since their transmission at the first queue takes longer, thereby giving the
second queue more time to empty out. For a traffic analogy, consider a slow truck
traveling on a busy narrow street together with several faster cars. The truck will
typically see empty space ahead of it while being closely followed by the faster cars.

As an indication of the difficulty of analyzing queueing network problems
involving dependent interarrival and service times, no analytical solution is known
for even the simple tandem queueing problem of Fig. 3.18 involving Poisson arrivals
and exponentially distributed service times. In the real situation where packet
lengths and interarrival times are correlated, a simulation has shown that under
heavy traffic conditions, average delay per packet is smaller than in the idealized
situation where there is no such correlation. The reverse is true under light traffic
conditions. It is not known whether and in what form this result can be extended
to more general networks.

Consider now a network of communication links as shown in Fig. 3.19. Assume
that there are several packet streams each following a path p that consists of a
sequence of links through the network. Let sx, in packets/sec, be the arrival rate
of the packet stream associated with the path p. Then, the total arrival rate at link

··
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(i,j) is
ij XP (3.88)

all p
traversing
link (i,j)

We have seen from the special case of two tandem queues that even if the
packet streams are Poisson with independent packet lengths at their point of entry
into the network, this property is lost after the first transmission line. To resolve
the dilemma, it was suggested by Kleinrock [Kle64] that merging several packet
streams on a transmission line has an effect akin to restoring the independence of
interarrival times and packet lengths. It was concluded that it is often appropriate
to adopt an M/M/1 queueing model for each communication link regardless of the
interaction of traffic on this link with traffic on other links (see also the discussion
preceding Jackson's theorem in section 3.8). This is known as the Kleinrock in-
dependence approximation and seems to be a reasonably good approximation for
systems involving Poisson stream arrivals at the entry points, packet lengths that
are nearly exponentially distributed, a densely connected network, and moderate
to heavy traffic loads. Based on this M/M/1 model, the average number of packets
in queue or service at (i, j) is

N Aij (3.89)
14ij - Aij

where 1/Iij is the average packet transmission time on link (i,j). The average
number of packets summed over all queues is

N Aj_ (3.90)
( ij - Aij

so by Little's Theorem, the average delay per packet (neglecting processing and
propagation delays) is

T = Ai (3.91)
11 0 ij - Aij

where 7 = -, • , is the total arrival rate in the system. If the average processing
and propagation delay dij at link (i, j) is not negligible, this formula should be
adjusted to

T= A ij + Aijd1 ) (3.92)

Finally, the average delay per packet of a traffic stream traversing a path p is given
by

TP = Ai +  1 + d) (3.93)
all (i, j) - A)

on path p
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Figure 3.20 A Poisson process with rate A divided among two
links. If division is done by randomization, each link behaves like an
M/M/1 queue. If division is done by metering, the whole system be-
haves like an M/M/2 queueing system.

where the three terms in the sum above represent average waiting time in queue,
average transmission time, and processing and propagation delay, respectively.

In many networks, the assumption of exponentially distributed packet lengths
is not appropriate. Given a distribution function on packet lengths, one may keep
the approximation of independence between queues but replace (3.89) with the P-K
formula for average number in the system. Equations (3.90) to (3.93) would then
be modified in an obvious way.

It should be mentioned that the main approximation involved in Eq. (3.90)
is due to the correlation of the packet lengths and the packet interarrival times at
the various queues in the network. If somehow this correlation was not present,
e.g., if a packet upon departure from a transmission line was assigned a new length
drawn from an exponential distribution, then the average number of packets in the
system would be given indeed by the formula

(i j)

This fact (by no means obvious) is a consequence of Jackson's Theorem, which will
be discussed in section 3.8.

In datagram networks that involve multiple path routing for some origin-
destination pairs, the accuracy of the M/M/1 approximation deteriorates for an-
other reason which is best illustrated by an example.

Example 13

Suppose node A sends traffic to node B along two equal capacity links in the simple
network of Fig. 3.20. Packets arrive at A according to a Poisson process with
rate A packets/sec. Packet transmission times are exponentially distributed and
independent of interarrival times similarly as in the M/M/1 system. Assume that
the arriving traffic is to be divided equally among the two links. However, how
should this division be implemented? Consider the following possibilities.

1. Randomisation: Here each packet is assigned upon arrival at A to
one of the two links based on the outcome of a fair coin flip. It is then
possible to show that the arrival process on each of the two queues is

___

Chap. 3



Sec. 3.7 Time Reversibility-Burke's Theorem

Poisson and independent of the packet lengths (see Prob. 3.11). There-
fore, each of the two queues behaves like an M/M/1 queue with arrival
rate A/2 and average delay per packet

1 2
TR A/2 - 2 (3.94)

which is consistent with the Kleinrock independence approximation.
2. Metering: Here each arriving packet is assigned to the queue that

currently has the smallest total backlog in bits (equivalently to the queue
that will empty its current backlog first). This scheme works like an
MIM/2 system with arrival rate A and with each link playing the role
of a server. Using the result of subsection 3.4.1, the average delay per
packet can be calculated to be

2
TM = (3.95)

(2 p - A)(1 + p)

where p = A/2up.
Comparing Eqs. (3.94) and (3.95), we see that metering performs better than

randomization in terms of delay by a factor 1/(1+p). This is basically the same ad-
vantage that statistical multiplexing with multiple channels holds over time-division
multiplexing as discussed in the Ex. 9 of subsection 3.4.1. Generally, it is prefer-
able to use some form of metering rather than randomization when dividing traffic
among alternate routes. However, in contrast with randomization, metering de-
stroys the Poisson character of the arrival process at the point of division. In our
example, when metering is used, the interarrival times at each link are neither ex-
ponentially distributed nor independent of preceding packet lengths. Therefore, the
use of metering (which is recommended for performance reasons) tends to degrade
the accuracy of the M/M/1 approximation.

3.7 TIME REVERSIBILITY-BURKE'S THEOREM

The analysis of the M/M/1, M/M/m, M/M/oo, and M/M/m/m systems was
based on the relation that for any state j, the steady-state probability of j times
the transition probability from j to j + 1 is equal to the steady state probability of
state j + 1 times the transition probability from j + 1 to j. These relations, called
detailed balance equations, are valid for any Markov chain with integer states in
which transitions can only occur between neighboring states, i.e., from j to j - 1,
j, or j + 1; these Markov chains are called birth-death processes. The detailed
balance equations lead to an important property called time reversibility as we now
explain.

Consider an irreducible, aperiodic, discrete-time Markov chain X,, Xn+1 ,...
having transition probabilities Pij and stationary distribution {pjIj > 0}. Suppose
that the chain is in steady state, i.e.,

P{X, = j} = pj , for all n
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(this occurs if the initial state is chosen according to the stationary distribution,
and is equivalent to imagining that the process began at time -oo).

Suppose we trace the sequence of states going backwards in time. That is,
starting at some n, consider the sequence of states X,, X,-1,.... This sequence is
itself a Markov chain as seen by the following calculation

P{Xm = jlXm+l = i, Xm.+2 = i2,..., Xm+k = ik}

P{Xm = j,Xm+ = i, Xm+2 = i2,...,Xm+k = ik}

P{Xm+I = i, Xm+2 = i2,... ,Xm+k = ik}

P{X. = j}) P{X,,+ = ijX = j}P{Xm+ 2 = i2,..., Xm+k = ik[Xm = j,Xm+1 = i}
P{Xm+, = i}P{Xm+2 = i2,...,Xm+k = ik Xm+l = i}

= PjPjiP{Xm+2 = i2,... ,Xm+k = ikXm+l = i} = PjPji

PiP{Xm+2 = i2,... ,Xm+k = ikXm+l = i} Pi

Thus, conditional on the state at time m + 1, the state at time m is independent of
that at times m + 2, m + 3... The backward transition probabilities are given by

Pij = P{Xm = jlXm+1 = i} = P i, i,j > 0 (3.96)

If Pi. = Pij for all i, j (i.e., the transition probabilities of the forward and reversed
chain are identical), we say that the chain is time reversible.

We list some properties of the reversed chain:

1. The reversed chain is irreducible, aperiodic, and has the same stationary dis-
tribution as the forward chain. (This property can be shown either by elemen-
tary reasoning using the definition of the reversed chain, or by verifying the
equality pj = E~o piP,. using Eq. (3.96).) The intuitive idea here is that the
reversed chain corresponds to the same process, looked at in the reversed time
direction. Thus, if the steady state probabilities correspond to time averages
(as they must for the concept of steady state to be meaningful), then the
steady state is the same in both directions. Note that, in view of the equality
of the stationary distribution of the forward and reverse chains, Eq. (3.96)
can be intuitively explained. It expresses the fact that (with probability one)
the proportion of transitions from j to i out of all transitions in the forward
chain (which is pjPji) equals the proportion of transitions from i to j out of
all transitions in the reversed chain (which is iPPi*).

2. If we can find nonnegative numbers pi, i Ž 0, summing to unity and find a
transition probability matrix P* = [P*.] such that

PiPi* = PjPji , i, Ji 0 (3.97)

then {pili Ž 0} is the stationary distribution and Pý. are the transition prob-
abilities of the reversed chain. (To see this, add Eq. (3.97) over all j to obtain

E Pji' = i E P = pi (3.98)
j=O j=0

__
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and conclude that {piji > 0} is the stationary distribution.) This property,
which holds regardless of whether the chain is time reversible, is useful if we
can guess at the nature of the reversed chain and verify Eq. (3.97), thereby
obtaining both the pj and Pij; see section 3.8.

3. A chain is time reversible if and only if the detailed balance equations hold:

PiPij = PjPji , i, j > 0

This follows from Eq. (3.96), and the definition of time reversibility. Other-
wise explained, a chain is time reversible if, for all i and j, the proportion
of transitions from i to j out of all transitions equals the proportion of tran-
sitions from j to i. In particular, the chains corresponding to the queueing
systems M/M/1 , M/M/m, M/M/oo, and M/M/m/m discussed in sections
3.3 and 3.4 are time reversible (in the limit as 6 - 0). More generally chains
corresponding to birth-death processes (Pj = 0 if Ii - j| > 1) are time re-
versible.

The idea of time reversibility extends in a straightforward manner to contin-
uous-time Markov chains. The corresponding analysis can be carried out either
directly, or by discretizing time in intervals of length 6, considering the correspond-
ing discrete-time chain, and passing back to the continuous chain by taking the
limit as 6 - 0. All results regarding the reversed chain carry over almost verba-
tim from their discrete-time counterparts by replacing transition probabilities with
transition rates. In particular if the continuous-time chain has transition rates qij,
is irreducible, and has a stationary distribution ({pjj > 0}, then:

1. The reversed chain is a continuous-time Markov chain with the same station-
ary distribution as the forward chain and with transition rates

SPqji i,j > 0 (3.99)
Pi

2. If a probability distribution {pjjj > 0} and nonnegative numbers q* (for
i,j = 0, 1,...) can be found such that

Piq * = Piqji, i,j > 0 (3.100)

and for all i > 0

Sqi = E qi (3.101)
i=o j=o

then {pj j ! 0} is the stationary distribution of both the forward and the
reversed chain, and qij are the transition rates of the reversed chain.

3. The forward chain is time reversible if and only if its stationary distribution
and transition rates satisfy the detailed balanced equations

Piqij = Pjqi , i,j > 0
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Consider now the M/M/1, M/M/m, and M/M/oo queueing systems. We
assume that the initial state is chosen according to the stationary distribution so
that the queueing systems are in steady state at all times. The reversed process can
be represented by another queueing system where departures correspond to arrivals
of the original system and arrivals correspond to departures of the original system
(see Fig. 3.21). Because time reversibity holds for all these systems as discussed
above, the forward and reversed systems are statistically indistinguishable in steady
state. In particular by using the fact that the departure process of the forward
system corresponds to the arrival process of the reversed system, we obtain the
following result:

Burke's Theorem. Consider an M/M/1, M/M/m, or M/M/oo system
with arrival rate A. Suppose the system starts in steady state. Then the following
hold true:

(a) The departure process is Poisson with rate A.

(b) At each time t, the number of customers in the system is independent
of the sequence of departure times prior to t.

(c) If customers are served in the order they arrive, then, given that a cus-
tomer departs at time t, the arrival time of that customer is independent
of the departure process prior to t.

Proof. (a) This follows from the fact that the forward and reversed systems
are statistically indistinguishable in steady state, and the departure process in the
forward system is the arrival process in the reversed system. (b) As shown in
Fig. 3.22, for a fixed time t, the departures prior to t in the forward process are
also the arrivals after t in the reversed process. The arrival process in the reversed
system is independent Poisson, so the future arrival process does not depend on
the current number in the system, which in forward system terms means that the
past departure process does not depend on the current number in the system. (c)
Consider a customer arriving at time tl and departing at time t2 (see Fig. 3.23).
In reversed system terms, the arrival process is independent Poisson, so the arrival
process to the left of t2 is independent of the times spent in the system of customers
that arrived at or to the right of t2 . In particular t2 - tl is independent of the
(reversed system) arrival process to the left of t2 . In forward system terms, this
means that t2 - t1 is independent of the departure process to the left of t2 . QED

Note that both parts (b) and (c) of Burke's Theorem are quite counterintu-
itive. One would expect that a recent stream of closely spaced departures suggests
a busy system with an atypically large number of customers in queue. Yet Burke's
Theorem shows that this is not so. Note carefully, however, that Burke's Theorem
says nothing about the state of the system before a stream of closely spaced depar-
tures. Such a state would tend to have abnormally many customers in queue in
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Figure 3.21 (a) Forward system number of arrivals, number of depar-
tures, and occupancy during [0, T]. (b) Reversed system number of arrivals,
number of departures, and occupancy during [0, T].
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Figure 3.22 Customer departures prior to time t in the forward system,
become customer arrivals qfter time t in the reversed system.

Customer arrival in Customer departure in
the forward process the forward process

N~-t-4-4
t12

Time direction in
the forward process

Time direction in
the reverse process

Customer departure Customer arrival
in the reversed process in the reversed process

Figure 3.28 Proof of part (c) of Burke's Theorem. In reversed system
terms, customer arrivals after t 2 do not affect the time spent in the system
of the customer that arrived at time t2 . In forward system terms, the time
spent in the system by the customer (t2 - t 1 ) is independent of the departure
process prior to the customer's departure.

PoisAon Queue 1 , Queue 2 X

Figure 3.24 Two queues in tandem. The service times at the two
queues are exponentially distributed and mutually independent. Using Burke's
Theorem, we can show that the number of customers in queues 1 and 2 are
independent at a given time and

P{n at queue 1, m at queue 2) = pn(1 - pl)pn(1 - P2),

i.e., the two queues behave as if they are independent M/M/1 queues in isola-
tion.

I ýý
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accordance with intuition.
As an application of the theorem we analyze the simple queueing network

involving Poisson arrivals and two queues in tandem with exponential service times
(see Fig. 3.24). There is a major difference between this system and the one dis-
cussed in the previous section in that here we assume that the service times of a
customer at the first and second queue are mutually independent as well as inde-
pendent of the arrival process. This is what we called the Kleinrock independence
approximation in the previous section. As a result of this assumption we will see
that the occupancy distribution in the two queues is the same as if they were inde-
pendent M/M/1 queues in isolation. This fact will also be shown in a more general
context in the next section.

Let the rate of the Poisson arrival process be A, and let the mean service times
at queues 1 and 2 be 1/pl and 1/P2 respectively. Let pi = A/pi and P2 = A/P 2 be
the corresponding utilization factors, and assume that pl < 1 and P2 < 1. We will
show that under steady-state conditions the following hold true:

(a) The number of customers presently at queue 1 and at queue 2 are mu-
tually independent, and independent of the sequence of past departure
times from queue 2. Furthermore,

P{n at queue 1, m at queue 2} = p'(1 - pl)p2 (1 - p2) (3.102)

(b) Assuming that customers are served at each queue in the order they
arrive, the times (including service) spent by a customer in queue 1 and
in queue 2 are mutually independent, and independent of the departure
process from queue 2 prior to the customer's departure from the system.

To prove (a) above we first note that queue 1 is an M/M/1 queue so, by
part (a) of Burke's Theorem, the departure process from queue 1 is Poisson and
independent of the service times at queue 2. Therefore, queue 2, viewed in isolation,
is an M/M/1 queue. Thus, from the results of section 3.1,

P{n at queue 1} = p'(1 - pl),
(3.103)P{m at queue 2} = pT(1 - P2)

From part (b) of Burke's theorem it follows that the number of customers presently
in queue 1 is independent of the sequence of earlier arrivals at queue 2 and therefore
also of the number of customers presently in queue 2. This implies that

P{n at queue 1, m at queue 2} = P{n at queue 1} -P{m at queue 2}

and using Eq. (3.103) we obtain the desired product form (3.102).
To prove (b) above note that, by part (c) of Burke's Theorem, the time

spent by a customer in queue 1 is independent of the sequence of arrival times at
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queue 2 prior to the customer's arrival at queue 2. However, these arrival times
(together with the corresponding independent service times) determine the time
the customer spends at queue 2 as well as the departure process from queue 2 prior
to the customer's departure from the system. This proves the statement made in
(b) above.

The assertion (b) above on the independence of the times spent by the same
customer at queues 1 and 2 is quite counterintuitive, since one expects that a
large number of customers found at queue 1 is likely to be reencountered at queue
2. As an illustration of how delicate this independence result is and how careful
one should be about accepting such results without much thought, we note that
the times a customer spends waiting before entering service at the two queues are
not independent. To see this suppose pi = p• = 1p and that A is very small
relative to p. Then, almost all customers have zero waiting time at both queues.
However, given that the wait of a customer at queue 1 is positive, the wait of
the same customer at queue 2 will be positive with probability at least 1/2 (the
probability that the customer will have a larger service time at queue 1 than the
service time of the customer immediately ahead at queue 2). Therefore, for the
same customer, the times spent waiting in queues 1 and 2 are not independent-
they become independent when the corresponding service times are added.

Note that, by part (a) of Burke's Theorem, the arrival and the departure
processes at both queues are Poisson. This fact together with facts (a) and (b) above
can be similarly shown for a much broader class of queueing networks with Poisson
arrivals and independent, exponentially distributed service times. We call such
networks acyclic and define them as follows. We say that queue j is a downstream
neighbor of queue i if there is a positive probability that a departing customer from
queue i will next enter queue j. We say that queue j lies downstream of queue i if
there is a sequence of queues starting from i and ending at j such that each queue
after i in the sequence is a downstream neighbor of its predecessor. A queueing
network is called acyclic if it is impossible to find two queues i and j such that
j lies downstream of i, and i lies downstream of j. Having an acyclic network is
essential for the Poisson character of the arrival and departure processes at each
queue to be maintained (see the next section). However, the product form (3.102)
of the occupancy distribution generalizes in a natural way to networks that are not
acyclic as we show in the next section.

3.8 NETWORKS OF QUEUES-JACKSON'S THEOREM

As discussed in section 3.6, the main difficulty with analysis of networks of trans-
mission lines is that the packet interarrival times after traversing the first queue
are correlated with their lengths. It turns out that if somehow this correlation
were eliminated (which is the premise of the Kleinrock independence approxima-
tion) and randomization is used to divide traffic among different routes, then the
average number of packets in the system can be derived as if each queue in the
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network was M/M/1. This is an important result known as Jackson's Theorem.
In this section we will derive a simple version of this theorem.

Consider a network of K single server queues in which customers arrive from
outside the network at each queue i in accordance with independent Poisson pro-
cesses at rate r1 . Once a customer is served at queue i, it proceeds to join each
queue j with probability Pij or to exit the network with probability 1 - _Ký= Pij.
The total customer arrival rate at queue j, denoted Aj, satisfies

K

Aj = r. + E tiPij, j= l,...,K (3.104)
i=1

These equations represent a linear system in which the total rates Aj, j = 1, ... , K,
constitute a set of K unknowns. We assume that they can be solved uniquely to
yield Aj, j = 1,...,K in terms of rj, Pij, i, j = 1,...,K. It can be shown that
this is guaranteed under very general assumptions-for instance, if all the depar-

ture probabilities 1- j=l Pii) are positive, i = 1,...,K, or, more generally,

if for every queue i1 , there is a queue i with (1 - PK= i) > 0 and a sequence

i, i2,...,iak,i such that Pi,i2 > 0,... ,Piki > 0.
The service times of customers at the ith queue are assumed exponentially

distributed with mean 1/P,, and are assumed mutually independent and indepen-
dent of the arrival process at the queue. The utilization factor of each queue is
denoted

P= i, =1,...,K, (3.105)

and we assume pi < 1 for all i.
In order to model a packet network such as the one considered in section 3.6

within the framework described above, it is necessary to accept several simplifying
conditions in addition to assuming Poisson arrivals and exponentially distributed
packet lengths. The first is the independence of packet lengths and interarrival
times discussed earlier. The second is relevant to datagram networks, and has to
do with the assumption that bifurcation of traffic at a network node can be modeled
reasonably well by a randomization process whereby each departing packet from
queue i joins queue j with probability Pi--this need not be true, as discussed in
section 3.6. Still a packet network differs from the model of this section because
it involves several traffic streams which may have different routing probabilities at
each node, and which maintain their identity as they travel along different routes.
This difficulty can be partially addressed by using an extension of Jackson's Theo-
rem that applies to a network with multiple classes of customers. Within this more
general framework, we can model traffic streams corresponding to different origin-
destination pairs as different classes of customers. If all traffic streams have the
same average packet length, it turns out that Jackson's Theorem as stated below
is valid assuming the simplifying conditions mentioned earlier.
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Turning now to analysis, we view the system as a continuous-time Markov
chain with states ni, n ,..., nK where ni denotes the number of customers at queue
i. Let P(nl,..., nK) denote the stationary distribution of the chain. We have:

Jackson's Theorem. Assuming pi < 1, i = 1,..., K, we have for all
nl,...,nK > 0

P(nl,..., nK) = P1(nl)P2 (n2) ... PK (nK) (3.106)

where
Pi(n) = pn(1 - pi), n > 0 (3.107)

Proof. We use a technique outlined in the previous section whereby we guess
at the transition rates of the reversed process and verify that, together with the
stationary probabilities given by Eqs. (3.106) and (3.107), they satisfy the con-
ditions for such rates given by Eqs. (3.100) and (3.101) of the previous section.
(The Markov chain is not time reversible here. Nonetheless, the use of the reversed
process is both analytically convenient and conceptually useful.)

More specifically denote state vectors as

nl= (nl,n2,... , nK)

and denote (cf. Eq. (3.106))

P(n) = Pl(nl)P2(n2) ... PK (nK) (3.108)

For any two state vectors n and n', let qnn' be the corresponding transition rate.
Jackson's Theorem will be proved if we can find rates q*n, such that for all n, n'

P(n)qnn' = P(n')qn*n (3.109)

and

qnm= qnm (3.110)
m m

For state vectors n and n' of the form

n= (nl,..., ni,..., nK)
n' = (nl,...,ni + 1,..., nK)

we have

qnn' = ri (3.111)

qn'n = /Ai - Ej ) (3.112)

_·____
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If we define

qn' = A i 1 - E-jP (3.113)

.* _ iri =(3.114)qnn A,

we see that Eq. (3.109) is satisfied.
Next consider state vectors n and n' of the form

n = (ni,...,ni,...,nj,....,nK)

n' = (ni,..., ni + 1,..., nj - 1,..., nK)

We have
qnn' = PPji (3.115)

If we define

q = wAPii (3.116)

we see again that Eq. (3.109) is satisfied.
Since for all other types of pairs of state vectors n, n', we have

qnn = 0 (3.117)

we can define
qnn = 0 (3.118)

and be assured that Eq. (3.109) holds for all n and n'. Finally, a straightforward cal-
culation using Eqs. (3.111) through (3.118) and Eq. (3.104) verifies that Eq. (3.110)
holds. QED

Note that the transition rates q*n, defined by Eqs. (3.113), (3.114), (3.116),
and (3.118), are those of the reversed process. It can be seen that the reversed
process corresponds to a network of queues where traffic arrives at queue i from

outside the network according to a Poisson process with rate Ai (1 - -j Pji)
(cf. Eq. (3.113)). The routing probability from queue i to queue j in the reversed
process is AjPji/ (ri + Ek AkPki) (cf. Eq. (3.114) and (3.116)).

There are several extensions of Jackson's theorem. For example, the product
form (3.106) holds if each queue i has multiple servers, say mi, rather than a single
server. In that case, the formula corresponding to (3.107) is identical to the one of
the M/M/mi system. Other extensions involve closed networks where there is a
fixed number of customers circulating inside the network with no external arrivals
or departures allowed (see Prob. 3.28).

We now turn to interpretation of Jackson's Theorem. First, from Eq. (3.106)
we see that the numbers of customers at distinct queues at a given time are inde-
pendent. The equation for the distribution of customers at each queue i is identical
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Customer exits
the system with
probability 1 - p

tomer returns to
queue with high
3ability p (successive

services of the same
customer are assumed
independent)

Figure 3.25 Example of a queue within a network where the external
arrival process is Poisson but the total arrival process at the queue is not
Poisson. An external arrival is typically processed fast (since 1 is much larger
than A), and with high probability returns to the queue through the feedback
loop. As a result, the total queue arrival process typically consists of bursts of
arrivals with each burst triggered by the arrival of a single customer from the
outside.

as for an M/M/1 queue (compare Eq. (3.107) and the corresponding equations in
section 3.3). This is a remarkable result particularly since one can show by example
that the arrival process at each queue need not be a Poisson process. In fact, if there
is a possibility that a customer may visit a queue more than once (a situation called
feedback), the arrival process will not be Poisson. As an example (see Fig. 3.25),
suppose that there is a single queue with a service rate which is very large relative
to the arrival rate from the outside. Suppose also that with probability p near
unity, a customer upon completion of service is fed back into the queue. Hence,
when an arrival occurs at the queue, there is a large probability of another arrival
at the queue in a short time (namely, the feedback arrival), whereas at an arbitrary
time point, there will be only a very slight chance of an arrival occurring shortly
since A is small. In other words, queue arrivals tend to occur in bursts triggered by
the arrival of a single customer from the outside. Hence, the queue arrival process
does not have independent interarrival times and cannot be Poisson.

Unfortunately, our proof of Jackson's theorem is based on algebraic manipula-
tion, and gives little insight as to why this remarkable result holds. For this reason
we provide a heuristic explanation for the case of the feedback network of Fig. 3.25.
This explanation can be generalized and made rigorous albeit at the expense of a
great deal of technical complications (see [Wal83]).

Suppose that we introduce a delay A in the feedback loop of the single-queue

___
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Figure 3.26 Heuristic explanation of Jackson's Theorem. Consider the
introduction of an arbitrarily small positive delay A in the feedback loop of the
network of Figure 3.25. An occupancy distribution of the queue that equals
the M/M/1 equilibrium, and a content of the delay line that is an independent
A segment of a Poisson process form an equilibrium distribution of the overall
system. Therefore, the M/M/1 equilibrium distribution is an equilibrium for
the queue as suggested by Jackson's Theorem even though the total arrival
process to the queue is not Poisson.

network discussed above (see Fig. 3.26, where for convenience, we have chosen
p = 1/2). Let us denote by n(t) the number in the queue at time t, and by
fA(t) the content of the delay line at time t. The interpretation here is that fa(t)
is a function of time that specifies the customer output of the delay line in the
subsequent A interval (t, t + A]. Suppose that the initial distribution n(O) of the
queue state at time 0, is equal to the steady state distribution of an M/M/1 queue,
i.e.,

P{n(O) = n} = p"(l - p) (3.119)

where p = 2A/pu is the utilization factor. Suppose also that fA (0) is a portion of a
Poisson arrival process with rate A. The customers in fI (0) have service times that
are independent, exponentially distributed with parameter y. We assume that n(0)
and fa (0) are independent. Then, the input to the queue over the interval [0, A)
will be the sum of two independent Poisson streams which are independent of the
number in queue at time 0. It follows that the queue will behave in the interval
[0, A) like an M/M/1 queue in equilibrium. Therefore, n(A) will be distributed
according to the M/M/1 steady-state distribution of Eq. (3.119), and by part (b)
of Burke's theorem, n(A) will be independent of the departure process from the
queue in the interval [0, A), or, equivalently, of fA (A)-the delay line content at
time A. Furthermore, by part (a) of Burke's Theorem, f (A) will be Poisson.
Thus, to summarize, we started out with independent initial conditions n(0) and
fA (0) which had the equilibrium distribution of an M/M/1 queue and the statistics
of a Poisson process, respectively, and A seconds later we obtained corresponding
quantities n(A) and fa(A) with the same properties. Using the same reasoning,
we can show that for all t, n(t) and fa (t) have the same properties. It follows that
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the M/M/1 steady-state distribution of Eq. (3.119) is an equilibrium distribution
for the queueing system for an arbitrary positive value of the feedback delay A, and
this strongly suggests the validity of Jackson's Theorem. Note that this argument
does not suggest that the feedback process and, therefore, also the total arrival
process to the queue are Poisson. Indeed, it can be seen that successive A portions
of the feedback arrival stream are correlated since, with probability 0.5, a departing
customer from the queue appears as an arrival A seconds later. Therefore, over
the interval [0, oo), the feedback process is not Poisson. This is consistent with our
earlier observations regarding the example of Fig. 3.25.

3.9 SUMMARY

Queueing models provide qualitative insights on the performance of data networks,
and quantitative predictions of average packet delay. An example of the former is
the comparison of time-division and statistical multiplexing, while an example of
the latter is the delay analysis of reservation systems.

To obtain tractable queueing models for data networks, it is frequently nec-
essary to make simplifying assumptions. A prime example is the Kleinrock in-
dependence approximation discussed in section 3.6. Delay predictions based on
this approximation are adequate for many uses. A more accurate alternative is
simulation which, however, can be slow, expensive, and lacking in insight.

Little's Theorem is a simple but extremely useful result since it holds un-
der very general conditions. To proceed beyond this theorem we assumed Poisson
arrivals and independent interarrival and service times. This led to the M/G/1
system, and its extensions in reservation and priority queueing systems. We ana-
lyzed a surprisingly large number of important delay models using simple graphical
arguments. An alternative analysis was based on the use of Markov chain models
and led to the derivation of the occupancy probability distribution of the M/M/1 ,
MIMIm, and related systems.

Reversibility is an important notion that helps to prove and understand Jack-
son's Theorem, and provides a taste of advanced queueing topics.

3.10 NOTES, SOURCES, AND SUGGESTED READING

Section 3.2. Little's Theorem was formalized in [Lit61]. Rigorous proofs
under various assumptions are given in [Sti72] and [Sti74]. Several applications in
finding performance bounds of computer systems are described in [StA85].

Section 3.3. For a general background on the Poisson process, Markov
chains, and related topics, see [Ros8O0], [Ros83], and [KaT75]. Standard texts on
queueing theory include [Coo81], [GrH85], [HeS82], and [Kle75]. A reference for the
fact that Poisson arrivals see a typical occupancy distribution (subsection 3.3.2) is
[Wol82a].
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Section 3.4. Queueing systems that admit analysis via Markov chain theory
include those where the service times have an Erlang distribution; see [Kle76], Chap.
4. For extensions to more general models and computational methods, see [Kei79],
[Neu81], [Haj82], and [Twe82].

Section 3.5. The P-K formula is often derived by using z-transforms; see
[Kle75]. This derivation is not very insightful, but gives the probability distribution
of the system occupancy (not just the mean that we obtained via our much simpler
analysis). For more on delay analysis of ARQ systems see [AnP86] and [ToW79].

The results on polling and reservation systems are of recent origin; see [Coo70],
[Eis79], [FeA85], [FuC85], [IEE86], and [Kue79]. The original references that are
closest to our analysis are [Has72] for unlimited service systems, [NoT78] for limited
service systems, and [Hum78] for nonsymmetric polling systems. Reference [Tak86]
is a monograph devoted to polling. There are two main reservation and polling
systems considered in the literature: the symmetric case, where all users have iden-
tical arrival and reservation interval statistics, and the nonsymmetric case, where
these statistics are user dependent. The former case admits simple expressions for
the mean waiting times while the latter does not. We have considered the partially
symmetric case, where all users have identical arrival statistics but different reser-
vation interval statistics. The fact that simple expressions hold for this case has not
been known earlier and, in this respect, our formulas are original. Our treatment
in terms of simple graphical arguments is also original. The result of Prob. 3.25 on
limited service systems with shared reservation and data intervals is new.

An extensive treatment of priority queueing systems is [Jai68]. A simpler, less
comprehensive exposition is given in [Kle75].

Section 3.6. Delay analysis for data networks in terms of M/M/1 approxima-
tions was introduced in [Kle64]. References [Wol82b] and [PiW82] study via analysis
and simulation the behavior of two queues in tandem when the service times of a
customer at the two queues are dependent. The special issues [IEE86] provides a
view of recent work on the subject.

Section 3.7. The notion of reversibility in queueing networks is explored in
depth in [Ke179].

Section 3.8. There is an extensive literature on product form solutions of
queueing networks following Jackson's original paper [Jac57]. The survey [DiK85]
lists 314 references. Two books on the subject are [Ke179] and [BrB80]. The
heuristic explanation of Jackson's theorem is due to [Wal83].
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PROBLEMS

3.1 Customers arrive at a fast-food restaurant at a rate of five per minute, and
wait to receive their order for an average of five minutes. Customers eat in
the restaurant with probability 0.5, and carry out their order without eating
with probability 0.5. A meal requires an average of 20 minutes. What is the
average number of customers in the restaurant?

3.2 An absent-minded professor schedules two student appointments for the same
time. The appointment durations are independent and exponentially dis-
tributed with mean thirty minutes. The first student arrives on time, but the
second student arrives five minutes late. What is the expected time between
the arrival of the first student and the departure of the second student?

3.3 A person enters a bank and finds all of the four clerks busy serving customers.
There are no other customers in the bank, so the person will start service as
soon as one of the customers in service leaves. Customers have independent,
identical, exponential distribution of service time.

(a) What is the probability that the person will be the last to leave the bank
assuming no other customers arrive?

(b) If the average service time is one minute, what is the average time the
person will spend in the bank?

(c) Will the answer in (a) change if there are some additional customers
waiting in a common queue, and customers begin service in the order of
their arrival?

3.4 Consider a packet stream whereby packets arrive according to a Poisson pro-
cess with rate 10 packets/sec. If the interarrival time between any two suc-
cessive packets is less than the transmission time of the first, the two packets
are said to collide. (This notion will be made more meaningful in Chapter 4
when we talk about multiaccess schemes.) Find the probability that a packet
collides with either its predecessor or its successor assuming:

(a) All packets have a transmission time of 20 msec.
(b) Packets have independent, exponentially distributed transmission times

with mean 20 msec.

3.5 A communication line capable of transmitting at a rate of 50 Kbits/sec will be
used to accommodate 10 sessions each generating Poisson traffic at a rate 150
packets/min. Packet lengths are exponentially distributed with mean 1000
bits.

_·~
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(a) For each session, find the average number of packets in queue, the aver-
age number in the system, and the average delay per packet when the
line is allocated to the sessions by using:
(1) 10 equal capacity time-division multiplexed channels
(2) statistical multiplexing.

(b) Repeat (a) for the case where 5 of the sessions transmit at a rate of 250
packets/min while the other 5 at a rate 50 packets/min.

3.6 Repeat part (a) of Prob. 3.5 for the case where packet lengths are not expo-
nentially distributed, but 10% of the packets are 100 bits long and the rest
are 1500 bits long. Repeat the problem for the case where the short packets
are given nonpreemptive priority over the long packets.

3.7 A communication line is divided in two identical channels each of which will
serve a packet traffic stream where all packets have equal transmission time
T, and equal interarrival time R > T. Consider, alternatively, statistical
multiplexing of the two traffic streams by combining the two channels into
a single channel with transmission time T/2 for each packet. Show that the
average system time of a packet will be decreased from T to something between
T/2 and 3T/4, while the variance of waiting time in queue will be increased
from 0 to as much as T2 /16.

3.8 Persons arrive at a taxi stand with room for five taxis according to a Poisson
process with rate one per minute. A person boards a taxi upon arrival if one
is available and otherwise waits in a line. Taxis arrive at the stand according
to a Poisson process with rate two per minute. An arriving taxi that finds
the stand full departs immediately; otherwise, it picks up a customer if at
least one is waiting, or else joins the queue of waiting taxis. What is the
steady-state probability distribution of the taxi queue size?

3.9 A communication node A receives Poisson packet traffic from two other nodes
1 and 2 at rates A1 and A2 , respectively, and transmits it on a link with
capacity C bits/sec. The two input streams are assumed independent and
their packet lengths are identically and exponentially distributed with mean
L bits. A packet from node 1 is always accepted by A. A packet from node 2 is
accepted only if the number of packets in A (in queue or under transmission)
is less than a given number K > 0; otherwise, it is assumed lost.

(a) What is the range of values of A• and A2 for which the expected number
of packets in A will stay bounded as time increases?

(b) For A1 and A2 in the range of part (a) find the steady-state probability
of having n packets in A (0 < n < oo). Find the average time needed
by a packet from source 1 to clear A once it enters A, and the average
number of packets in A from source 1. Repeat for packets from source 2.
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3.10 (a) Derive Eqs. (3.11) to (3.14).

(b) Show that if the arrivals in two disjoint time intervals are independent
and Poisson distributed with parameters AT1 , AT2 , then the number of
arrivals in the union of the intervals is Poisson distributed with param-
eter A(r• + r2).

(c) Show that if k independent Poisson processes A,,..., Ak are combined
into a single process A = A, + A2 + -.. + Ak, then A is Poisson with
rate A equal to the sum of the rates A1 ,... Ak of A 1,..., Ak. Show also
that the probability that the first arrival of the combined process comes
from A, is A1/A independently of the time of arrival.

(d) Suppose we know that in an interval [tl, t2] only one arrival of a Poisson
process has occurred. Show that, conditional on this knowledge, the
time of this arrival is uniformly distributed in [tl, t2 ].

3.11 Packets arrive at a transmission facility according to a Poisson process with
rate A. Each packet is independently routed with probability p to one of two
transmission lines and with probability (1 - p) to the other. Show that the
arrival processes at the two transmission lines are Poisson with rates Ap and
A(1 - p) respectively. Furthermore the two processes are independent.

3.12 Consider a system that is identical to MIMI1 except that when the system
empties out, service does not begin again until k customers are present in the
system (k is given). Once service begins it proceeds normally until the system
becomes empty again. Find the steady state probabilities of the number in
the system, the average number in the system, and the average delay per
customer.

3.13 A telephone company establishes a direct connection between two cities ex-
pecting Poisson traffic with rate 30 calls/min. The durations of calls are
independent and exponentially distributed with mean three minutes. Inter-
arrival times are independent of call durations. How many circuits should
the company provide to ensure that an attempted call is blocked (because all
circuits are busy) with probability less than 0.01? It is assumed that blocked
calls are lost, i.e., a blocked call is not attempted again.

3.14 Consider an M/M/oo queue with servers numbered 1, 2,... There is an addi-
tional restriction that upon arrival a customer will choose the lowest numbered
server that is idle at the time. Find the fraction of time that each server is
busy. Will the answer change if the number of servers is finite? Hint: Argue
that in steady-state the probability that all of the first m servers are busy
is given by the Erlang B formula of the M/M/m/m system. Find the total
arrival rate to servers (m + 1) and higher, and from this the arrival rate to
each server.

Chap. 3
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3.15 In the M/G/1 system, show that

P{the system is empty} = 1 - AX
Average length of time between busy periods = 1/A

Average length of busy period =

1
Average number of customers served in a busy period =

Consider the following argument: When a customer arrives the probability
that another customer is being served is AX. Since the served customer
has mean service time X, the average time to complete the service is X/2.

Therefore the mean residual service time is AX2/2. What is wrong with this
argument?

3.16 M/G/1 System with Arbitrary Order of Service. Consider the M/G/1 system
with the difference that customers are not served in the order they arrive.
Instead, upon completion of a customer's service, one of the waiting customers
in queue is chosen according to some rule, and is served next. Show that the
P-K formula for the average waiting time in queue W remains valid provided
the relative order of arrival of the customer chosen is independent of the service
times of the customers waiting in queue. Hint: Argue that the independence
hypothesis above implies that, at any time t, the number NQ(t) of customers
waiting in queue is independent of the service times of these customers. Show
that this in turn implies that U = R + pW where R is the mean residual
time, and U is the average steady-state unfinished work in the system (total
remaining service time of the customers in the system). Argue that U and R
are independent of the order of customer service.

3.17 Priority Systems with Multiple Servers. Consider the systems of subsection
3.5.3 where all priority classes have exponentially distributed service times
with common mean 1/p. Assume that there are m servers.

(a) Consider the nonpreemptive system. Show that Eq. (3.79) yields the
average queueing times with the mean residual time R given by

R= PQ
mrp

where PQ is the steady-state probability of queueing given by the Erlang
C formula of Eq. (3.36). (Here pi = Ai/(mp) and p = E•Z pi.)

(b) Consider the preemptive resume system. Write a formula for W(k)-
the average time in queue averaged over the first k priority classes. Use
Little's Theorem to show that the average time in queue of a kth priority
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class customer can be obtained recursively from

W1 = Wcl)
k k-1

Wk= Wwk) i- (k-1) k, = 2,3,...,n
i=1 i=1

3.18 Consider the nonpreemptive priority queueing system of subsection 3.5.3 for
the case where the available capacity is sufficient to handle the highest priority
traffic, but cannot handle the traffic of all priorities, i.e.,

PI < 1 < Pl +P2 +'+ Pn

Find the average delay per customer of each priority class. Hint: Determine
the departure rate of the highest priority class that will experience infinite
average delay, and the mean residual service time.

3.19 Consider an n-class, nonpreemptive priority system:

(a) Show that the sum •-"=1 PkWk is independent of the priority order of
classes, and in fact

1-pk=1

where p = pi + P2 + - - + pn. (This is known as the M/G/1 conservation
law [Kle64].) Hint: Use Eq. (3.79). Alternatively argue that U = R +

Ek=1 PkWk, where U is the average steady-state unfinished work in the
system (total remaining service time of customers in the system), and
U and R are independent of the priority order of the classes.

(b) Suppose there is a cost ck per unit time for each class k customer that
waits in queue. Show that cost is minimized when classes are ordered
so that

Cl C2 Cn

Hint~ Express the cost as = 1(Ck/Xk)(pkWk) and use part (a). Use
also the fact that interchanging the order of any two adjacent classes
leaves the waiting time of all other classes unchanged.

3.20 M/M/1 Shared Service System. Consider a system which is the same as
M/M/1 except that whenever there are n customers in the system they are
all served simultaneously at an equal rate 1/n per unit time. Argue that the

^___
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steady-state occupancy distribution is the same as for the M/M/1 system.
Note: It can be shown that the steady-state occupancy distribution is the
same as for M/M/1 even if the service time distribution is not exponential,
i.e., for an M/G/1 type of system ([Ros83], p. 171).

3.21 In Ex. 10 of subsection 3.4.2, verify the formula aI = (A/,u)1/ 2s,. Hint: Write

E{f 2 }= E{(Ez 1 i)
2 } = E{E{(E• Jqyi)2 In}},

and use the fact that n is Poisson distributed.

3.22 Show that Eq. (3.59) for the average delay of time-division multiplexing on a
slot basis can be obtained as a special case of the results for the limited service
reservation system. Generalize the expression (3.59) for the case where slot
lengths are random and independent, and the traffic streams do not have
equal rates and identical slot length distributions. Hint: Consider the gated
system with zero packet length.

3.23 Show that the expected cycle lengths in the single-user and multiuser reser-
vation systems are V/(1 - p) and mV/(1 - p), respectively. Hint: If Lk is the
length of the kth cycle show that E{Lk+ ILk} = V + pLk for the single-user
case.

3.24 Consider the limited service reservation system. Show that for both the gated
and the partially gated versions:

(a) The steady-state probability of arrival of a packet during a reservation
interval is 1 - p.

(b) The steady-state probability of a reservation interval being followed by
an empty data interval is (1 - p - AV)/(1 - p). Hint: If p is the required
probability, argue that the ratio of the times used for data intervals and
for reservation intervals is (1 - p)X/V.

3.25 Limited Service Reservation System with Shared Reservation and Data Inter-
vals. Consider the gated version of the limited service reservation system with
the difference that the m users share reservation and data intervals, i.e., all
users make reservations in the same interval and transmit at most one packet
each in the subsequent data interval. Show that

AX 2  (1 - p)V 2  (1 - pa - AV/m)VW= + _+
2(1 - p - AV/m) 2(1 - p - AV/m)V 1 - p - AV/m

where V and V2 are the first two moments of the reservation interval, and a
satisfies

K+(K - 1)(2K - K) 1 1 1
2mK 2m - - 2 2m
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where

AV
l-p

is the average number of packets per data interval, and kI is the smallest
integer which is larger than K. Verify that the formula for W becomes exact
as p -- 0 (light load), and as p -- 1 - AV/m (heavy load). Hint: Verify that

W =R +AW+ (I + W S) V

where S = limi,, E{Si} and Si is the number (0 or 1) of packets of the
owner of packet i that will start transmission between the time of arrival of
packet i and the end of the cycle in which packet i arrives. Try to obtain
bounds for S by considering separately the cases where packet i arrives in a
reservation and in a data interval.

A

Figure 3.27

3.26 Consider the network in Fig. 3.27. There are four sessions: ACE, ADE,
BCEF, and BDEF sending Poisson traffic at rates 100, 200, 500, and 600
packets/min., respectively. Packet lengths are exponentially distributed with
mean 1000 bits. All transmission lines have capacity 50 kbits/sec, and there is
a propagation delay of 2 msec on each line. Using the Kleinrock independence
approximation, find the average number of packets in the system, the average
delay per packet (regardless of session), and the average delay per packet of
each session.

Chap. 3
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Figure 3.28

3.27 Bounds on the Throughput of a Closed Queueing Network. Packets enter the
network of transmission lines shown in Fig. 3.28 at point A and exit at point
B. A packet is first transmitted on one of the lines L 1 ,..., LK, where it
requires on the average a transmission time X, and is then transmitted in
line LK+1, where it requires on the average a transmission time Y. To effect
flow control, a maximum of N > K packets are admitted into the system.
Each time a packet exits the system at point B, an acknowledgement is sent
back and reaches point A after a fixed time Z. At that time, a new packet
is allowed to enter the system. Use Little's Theorem to find upper and lower
bounds for the system throughput under two circumstances:

(a) The method of routing a packet to one of the lines L 1 ,...,LK is un-
specified.

(b) The routing method is such that whenever one of the lines L 1 ,..., LK
is idle, there is no packet waiting at any of the other lines.

3.28 Analysis of a Closed Queueing Network. Certain systems are best modelled
by closed queueing networks, where the number of customers in the system
is fixed. Consider a closed queueing network with 3 customers shown in Fig.
3.29 together with the probabilities that a departing customer from a queue
enters another.

(a) How would you define the state of this system? Draw the state transition
diagram and label the states and transition rates on your figure.

(b) Show that the system is reversible and that occupancy probabilities have
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the product form

P(nZn 2, n3 ) = a

where ni + n2 + n3 = 3, and a is a normalizing constant.

ACK after fixed time Z

Transmission time R

Figure 3.29

3.29 Consider two queues with independent Poisson arrivals and independent expo-
nentially distributed service times. The arrival and service rates are denoted
Ai, pi, for i = 1, 2, respectively. The two queues share a waiting room with
finite capacity B (including customers in service). Arriving customers that
find the waiting room full are lost. Show that for m+n + < B, the steady-state
probabilities are

P{m in queue 1, n in queue 2)} = cpr"pe

where pi = Ai/pl, i = 1, 2, and c is a normalizing constant.

3.30 Consider the M/M/1/m system which is the same as M/M/1 except that
there can be no more than m customers in the system and customers arriving
when the system is full are lost.

(a) Derive the steady-state occupancy probabilities.
(b) Show that the system is reversible, and characterize the departure pro-

cess.
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(1 n, n2 1 _ , n

1l A2 I3



Sec. 3.10 Problems

E

z

Figure 3.30

3.31 Little's Theorem for Arbitrary Order of Service. Use Fig. 3.30 to derive Lit-
tle's Theorem for systems where the order of customer service is arbitrary,
including cases where servers are shared by several customers, and customer
service can be interrupted to serve customers of higher priority. In this figure
ti is the arrival time of the ith customer, and Ti is the customer's system
time, i.e., the time between the customer's arrival and departure from the
system. Hint: Calculate the shaded area up to time t in two different ways.

3.32 Little's Theorem for Arbitrary Order of Service; Analytical Proof. Consider
the analysis of Little's theorem in section 3.2 and the notation introduced
there. Assume that the time average arrival and departure rates exist and are
equal

A = lim cf(t)/t = lim /(t)/t
k-oo t oo

and that the limit defining the time average system time
k

T= lim. T
i=l

exists. Show that, regardless of the order customers are served, Little's The-
orem (N = AT) holds with

N = lim I N(r)dr
t-oo t Jo
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Hint: Show that for all t, we have

0(t) t a(t)

ST _o1 N(r)dr < TI
i=-1 i=1

3.33 A Generalization of Little's Theorem. Consider an arrival/departure system
with arrival rate A, where entering customers are forced to pay money to the
system according to some rule.

(a) Argue that the following identity holds:

Average rate at which the system earns =

A - (Average amount a customer pays)

(b) Show that Little's Theorem is a special case.

(c) Consider the M/G/I1 system and the following cost rule: Each customer
pays at a rate of y per unit time when its remaining service time is y,
whether in queue or in service. Show that the formula in (a) can be
written as

W=A (W+-)

which is the Pollaczek-Khinchin formula.

3.34 M/G/1 Queue with Random Sized Batch Arrivals. Consider the M/G/1 sys-
tem with the difference that customers are arriving in batches according to
a Poisson process with rate A. Each batch has n customers, where n has a
given distribution and is independent of customer service times. Adapt the
proof of section 3.5 to show that the waiting time in queue is given by

AjX-- X(;( - ff)
W-- +

2(1 - p) 2T(1 - p)

Hint: Use the equation W = R + pW + WE where WE is the average waiting
time of a customer for other customers that arrived in the same batch.

3.35 M/G/1 Queue with Overhead for Each Busy Period. Consider the M/G/1
queue with the difference that the service of the first customer in each busy
period requires an increment A over the ordinary service time of the customer.
We assume that A has a given distribution and is independent of all other
random variables in the model. Let p = AX be the utilization factor. Show
that

~111~
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(a) Po = P{ the system is empty} = (1 - p)/(l + AA).

(b) Average length of busy period= (X + A)/(1 - p)

(c) The average waiting time in queue is

AX2 A[(X + A) 2 - X 2 ]W= +
2(1 - p) 2(1+ AA)

3.36 Single Vacation M/G/1 System. Consider the M/G/1 system with the dif-
ference that each busy period is followed by a single vacation interval. Once
this vacation is over, an arriving customer to an empty system starts service
immediately. Assume that vacation intervals are independent, indentically
distributed, and independent of the customer interarrival and service times.
Derive the average waiting time in queue.

3.37 The M/G/oo System. Consider a queueing system with Poisson arrivals at
rate A. There are an infinite number of servers, so that each arrival starts
service at an idle server immediately on arrival. Each server has a gen-
eral service time distribution and Fx(x) = P{X < x} denotes the prob-
ability that a service starting at any given time 7 is completed by time
7 + x (Fx(x) = 0 for x < 0). The servers have independent and identical
service time distributions.

(a) For x and 6 (0 < 6 < x) very small, find the probability that there was
an arrival in the interval [7 - x, 7 - x + 6] and that this arrival is still
being served at time r.

(b) Show that the mean service time for any arrival is given by

X = [1 - Fx(x)]dx

Hint: Use a graphical argument or integration by parts.

(c) Use (a) and (b) to verify that the number in the system is Poisson
distributed with mean AX.
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A P P E N D I X A: Review of Markov Chain Theory

The purpose of this appendix is to provide a brief summary of the results we need
from discrete- and continuous-time Markov chain theory. We refer the reader to
books on stochastic processes for detailed accounts.

3A.1 Discrete-Time Markov Chains

Consider a discrete-time stochastic process {X In = 0, 1, 2,...} that takes values
from the set of nonnegative integers, so the states that the process can be in are
i = 0,1 .... The process is said to be a Markov chain if whenever it is in state
i, there is a fixed probability Pij that it will next be in state j regardless of the
process history prior to arriving at i. That is, for all n > 0, in 1,...,io, i,

Pij = P{Xn+l = j|Xn = i, Xn-I = in-l,... -,Xo = io}

= P{X,+1 = jlXn = i}

We refer to Pij as the transition probabilities. They must satisfy

O0

PijO, EPIj=1, i=0,1,...
j=o

The corresponding transition probability matrix is denoted

Poo Po1  Po2  "'"

PIo P1  P12  ...

Pio Pil Pi2  ...

Consider the n-step transition probabilities

Pi = P{Xn+m = jXm = i}, n > O,i,j _ O .

The Chapman-Kolmogorov equations provide a method for calculating Pn. They
are given by

00

p"+m=- - P P, n,m>O,i,'>O
k=O

From these equations, we see that Pj are the elements of the matrix P" (the

transition probability matrix P raised to the nth power).
We say that two states i and j communicate if for some n and n', we have

PIn > 0, P,' > 0. If all states communicate, we say that the Markov chain is

___
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irreducible. We say that the Markov chain is aperiodic if for each state i there is
no integer d > 2 such that P@ = 0 except when n is a multiple of d. A probability
distribution {pjlj >- 0} is said to be a stationary distribution for the Markov chain
if

o00

py = E Pi Pij, Jý 0. (3A.1)
i=0

We will restrict attention to irreducible and aperiodic Markov chains, since
this is the only type we will encounter. For such a chain, denote

pj = lim P,, j>0

It can be shown that the limit above exists and when p- > 0, then 1/pj equals the
mean recurrence time of j, i.e., the expected number of transitions between two
successive visits to state j. If pj = 0, the mean recurrence time is infinite. Another
interpretation is that p3 represents the proportion of time the process visits j on
the average. The following result will be of primary interest:

Theorem. In an irreducible, aperiodic Markov chain, there are two possi-
bilities:

1. pj = 0 for all j > 0 in which case the chain has no stationary distribution.
2. pj > 0 for all j > 0 in which case {pjij > 0} is the unique stationary distri-

bution of the chain.

A typical example of case 1 above is an M/M/1 queueing system where the
arrival rate A exceeds the service rate p.

In case 2, there arises the issue of characterizing the stationary distribution
{pjij _ 0}. For queueing systems, the following technique is often useful. Multi-
plying the equation Pjj + E9=o Pji = 1 by p3 and using Eq. (3A.1), we have

io.

Pi E Pji= E p Pij (3A.2)
i=0 i=0
i#i ii#j

These equations are known as the global balance equations. They state that, at
equilibrium, the probability of a transition out of j (left side of Eq. (3A.2)) equals
the probability of a transition into j (right side of Eq. (3A.2)).

The global balance equations can be generalized to apply to an entire set of
states. Consider a subset of states S. By adding Eq. (3A.2) over all jeS, we obtain

EPJpE Pji =EpZ Pij (3A.3)
jes i~s irs j••

which means that the probability of a transition out of the set of states S equals the
probability of a transition into S.
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An intuitive explanation of these equations is based on the fact that when
the Markov chain is irreducible, the state (with probability one) will return to
the set S infinitely many times. Therefore, for each transition out of S there
must be (with probability one) a reverse transition into S at some later time.
As a result, the proportion of transitions out of S (over all transitions) equals the
proportion of transitions into S. This is precisely the meaning of the global balance
equations (3A.3).

3A.2 Detailed Balance Equations

As an application of the global balance equations, consider a Markov chain typical
of queueing systems and, more generally, birth-death systems where two successive
states can only differ by unity as in Fig. 3A.1. We assume that Pi,i+1 > 0 and

Pi+I,, > 0 for all i. This is a necessary and sufficient condition for the chain to be
irreducible. Consider the sets of states

S={0, 1,...,n}

Application of Eq. (3A.3) yields

PnPn,n+l = Pn+lPn+l,n, n = 0, 1,... (3A.4)

i.e., in steady state, the probability of a transition from n to n + 1 equals the
probability of a transition from n + 1 to n. These equations can be very useful in
computing the stationary distribution {pjij > 0} (see sections 3.3 and 3.4).

Figure 3A.1 Transition probability diagram for a birth-death process.

Equation (3A.4) is a special case of the equations

PPjP i = PiPij , i, j>_ 0 (3A.5)

known as the detailed balance equations. These equations need not hold in any
given Markov chain. However, in many important special cases, they do hold and
greatly simplify the calculation of the stationary distribution. A common method
of verifying the validity of the detailed balance equations for a given irreducible,
aperiodic Markov chain is to hypothesize their validity and try to solve them for the
steady-state probabilities pj, j > 0. There are two possibilities; either the system
(3A.5) together with - pj = 1 is inconsistent or else a distribution {pIij Ž 0}
satisfying Eq. (3A.5) will be found. In the latter case, this distribution will clearly

___

Chap. 3



Sec. 3.10 Appendix A

also satisfy the global balance equations (3A.2). These equations are equivalent to
the condition

00

pi= EpPij, j= ,1,...
i=0

so, by the theorem given earlier, {pjlji O} is the unique stationary distribution.

3A.3 Partial Balance Equations

Some Markov chains have the property that their stationary distribution {pj Ij 2 0}
satisfies a set of equations which is intermediate between the global and the detailed
balance equations. For every node j, consider a partition SI,..., SF of the com-
plementary set of nodes {ili > 0, i 3 j} and the equations

pj E Pji = E PPij, m = 1, 2,..., k (3A.6)
iESm ieSm

Equations of the form above are known as a set of partial balance equations. If a
distribution {pjlj Ž! 0} solves a set of partial balance equations, then it will also
solve the global balance equations so it will be the unique stationary distribution
of the chain. A technique that often proves useful is to guess the right set of partial
balance equations satisfied by the stationary distribution and then proceed to solve
them.

3A.4 Continuous-Time Markov Chains

A continuous-time Markov chain is a process (X(t)|t > 0} taking values from the
set of states i = 0, 1,... that has the property that each time it enters state i:

1. The time it spends in state i is exponentially distributed with parameter vi.
We may view vi as the average rate (in transitions/sec) at which the process
makes a transition when at state i.

2. When the process leaves state i, it will enter state j with probability Pij,
where Ej Pjj = 1.
We will be interested in chains for which:

1. The number of transitions in any finite length of time is finite with
probability one (such chains are called regular).

2. The discrete-time Markov chain with transition probabilities Pii (called
the imbedded chain) is irreducible.

Under the preceding conditions, it can be shown that the limit

pj = lim P{X(t) = jjX(O) = i}
t O0

(3A.7)
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exists and is independent of the initial state i. Furthermore if the imbedded chain
has a stationary distribution {irjij _ 0), the steady-state probabilities p3 of the
continuous chain are all positive and satisfy

p = rjvj = 0,'1,... (3A.8)

The interpretation here is that iry represents the proportion of visits to state j,
while pj represents the proportion of time spent in state j in a typical system run.

For every i and j, denote
qij = viPij (3A.9)

Since vi is the rate at which the process leaves i and Pij is the probability that it
then goes to j, it follows that qtj is the rate at which the process makes a transition
to j when at state i. Consequently, qij is called the transition rate from i to j.

Since we will often analyze continuous-time Markov chains in terms of their
time-discretized versions, we describe the general method for doing this.

Consider any 6 > 0, and the discrete-time Markov chain {XIn 2 0}, where

X, = X(nb), n = 0,1,...

The stationary distribution of {X,} is clearly {pijj >_ 0}, the stationary distribution
of the continuous chain (cf. Eq. (3A.7)). The transition probabilities of {Xln > 0}
are

Pi = 6qi, +o(6), i # j

-- = 1 - 6E q. + o(6)
j#i

Using these expressions in the global balance equations for the discrete chain

(cf. Eq. (3A.2)) and taking the limit as 6 -- 0, we obtain

00 00

Pi qji = Pi•ij, = 0, 1,... (3A.10)
i=0 i=0

These are the global balance equations for the continuous chain. Similarly, the
detailed balance equations take the form

Pjqji = Piqqi, i,j = 0, 1,..., (3A.11)

One can also write a set of partial balance equations and attempt to solve them
for the distribution {pjlj I 0}. If a solution is found, it provides the stationary
distribution of the continuous chain.
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A P P E N D I X B: Summary of Results

Notation
p,: Steady-state probability of having n customers in the system

A: Arrival rate (inverse of average interarrival time)

/u: Service rate (inverse of average service time)

N: Average number of customers in the system

NQ: Average number of customers waiting in queue

T: Average customer time in the system

W: Average customer waiting time in queue (does not include service time)

X: Average service time

X 2 : Second moment of service time

Little's Theorem
N= AT

NQ = AW

Poisson distribution with parameter m

e-mmn

n! , n = 0, 1,...

Mean = Variance = m

Exponential distribution with parameter A

P{r s} = 1 - e- , 8s > 0.

Density: p(r) = Ae- Ar

Mean = 1/A

Variance = 1/A2

Summary of M/M/1 System Results
(a) Utilization factor (proportion of time the server is busy)

(b) Probability of n customers in the system

pn=pn(1-p), n=0,1,...



200 Delay Models in Data Networks Chap. 3

(c) Average number of customers in the system

(d) Average customer time in the system

T= =

(e) Average number of customers in queue
2

(f) Average waiting time in queue of a customer
W= P

Summary of M/M/m System Results
(a) Ratio of arrival rate to maximal system service rate

(b) Probability of n customers in the system

1-1
(mp)k (mp)m

Po k!=o m!(1 - p) 0

(mp)" n
Po M , n < m

P n!
n mmpn

n>m

(c) Probability that an arriving customer has to wait in queue (m customers or
more in the system)

PQ = Po(mP) (Erlang C Formula)
m!(1 - p)

(d) Average waiting time in queue of a customer

W= PPO
A(1 - p)

(e) Average number of customers in queue
PPONQ= I1p

(f) Average customer time in the system

T=I+W

(g) Average number of customers in the system

_ ·_
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PPQN =mp+ +P
1- p

Summary of M/M/m/m System Results
(a) Probability of m customers in the system

n=op n!J

Pn=Po - , n = 1,2,...,m

(b) Probability that an arriving customer is lost

Pm = (/ !  (Erlang B Formula)
,n= o(/p)" n!

Summary of M/G/1 System Results
(a) Utilization factor

A

(b) Mean residual service time

RAX
R=-

2
(c) Pollaczek-Khinchin formula

R AX 2

W=
1 - p 2(1 - p)

T=-+W

2(1 - p)

A2 X 2
N=p+ \

2(1 - p)

(d) Pollaczek-Khinchin formula for M/G/1 queue with vacations

AXZ  V 2

W= + -
2(1 - p) 2V

T=1 +W

where V and V 2 are the first two moments of the vacation interval.
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Summary of Reservation/Polling Results

(a) Average waiting time (m-user system, unlimited service)

•x + (m - p)V + V
W= + + -

2(1 - p) 2 (1 - p) 2V

AX-- (m + p)V o4
2(1 - p) 2 (1 - p) 2V

AX2 - (m + 2 - p)V oaW + +p 2
2(1 - p) 2(1 - p) 2V

(exhaustive)

(partially gated)

(gated)

where p = A/p, and V and oa are the mean and variance
intervals, respectively, averaged over all users

of the reservation

m--1

m-1
1 --

1=0

(b) Average waiting time (m-user system, limited service)

AX2  (m + p)V ___(____W = AX + ( + )V + p) (partially gated)
2(1 - p - AV) 2(1 - p - AV) 2V( - p - AV)

W AX (m + 2 - p - 2AV)V u (1 - p)2( - -p + + (gated)
2(1-p-AV) 2(1-p-AV) 2V(1-p-AV)

(c) Average time in the system

T=1 +W
p

Summary of Priority Queueing Results

(a) Nonpreemptive Priority. Average waiting time in queue for class k customers

Wk = E
2(1 -pl - - -Pk-1)(1 -PI- P . -Pk)

(b) Nonpreemptive Priority. Average time in the system for class k customers

Tk = ± + WkIlk

·_ _~
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(c) Preemptive Resume Priority. Average time in the system for class k customers

Tk (1/pk)(1 - p -... - Pk) + Rk

(1 - p - -pk-.1)( - P1 - '- Pk)
where

Rk
2


