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Abstract. The next generation of mobile wireless networks has to provide the quality-of-service (QoS) for a variety of applications.
One of the key generic QoS parameters is the call dropping probability, which has to be maintained at a predefined level independent of
the traffic condition. In the presence of bursty data and the emerging multimedia traffic, an adaptive and dynamic bandwidth allocation
is essential in ensuring this QoS. The paradox, however, is that all existing dynamic bandwidth allocation schemes require the prior
knowledge of all traffic parameters or/and user mobility parameters. In addition, most proposals require extensive status information
exchange among cells in order to dynamically readjust the control parameters, thus making them difficult to be used in actual deployment.

In this paper, we introduce a novel adaptive bandwidth allocation scheme which estimates dynamically the changing traffic parame-
ters throughlocal on-line estimation. Such estimations are restricted to each individual cell, thus completely eliminating the signaling
overhead for information exchange among cells. Furthermore, we propose the use of aprobabilistic control policy, which achieves a high
channel utilization, and leads to an effective and stable control. Through simulations, we show that our proposed adaptive bandwidth
allocation scheme can guarantee the predetermined call dropping probability under changing traffic conditions while at the same time
achieving a high channel utilization.
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1. Introduction

We have recently witnessed a proliferation and rapid deploy-
ment of the wireless cellular communication services. One
of the major challenges is to effectively utilize the prime
scarce resource (i.e., radio channels) in the emerging micro-
cell and pico-cell environment while at the same time guar-
anteeing the QoS of the on-going calls [18,19]. There are
two generic and critical QoS parameters in mobile wire-
less networks, namely the call (handoff) dropping probabil-
ity and the new call blocking probability. Dropping a call
in progress is generally considered to be more severe, and
needs to be kept under control. An efficient bandwidth allo-
cation scheme has to ensure that the call dropping probabil-
ity is maintained at a predefined level while at the same time
minimizing the new call blocking probability (or maximiz-
ing the channel utilization).
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The trunk reservation scheme(also called theguarded
channel scheme) has been extensively studied in the tradi-
tional voice-centric cellular networks [4,5]. The basic idea
is to reserve a fixed number of channels in each cell ex-
clusively for handoffs. This is shown to be able to de-
crease the dropping probability for the admitted calls. More-
over, the schemes proposed in [1,9,13] allow the queueing
of the handoff requests when there is no (reserved) chan-
nel available, which can further reduce the dropping prob-
ability at the expense of higher new call blocking. Ram-
jee et al. proved that such a scheme is optimal for a linear
objective function of call dropping and new call blocking
probabilities [16]. In addition, they proposed afractional
guarded channel policythat is optimal for minimizing the
call blocking probability subject to a hard constraint on the
call dropping probability. In other words, for a given set of
parameters including traffic parameters and mobility char-
acteristics, the fixed bandwidth allocation scheme based on
guarded channel assignment or its variants can yield an op-
timal solution. All such schemes, however, by reserving a
fixed number of channels, cannot adapt to changes in the
network conditions due to its static nature. This is clearly
not suitable in the presence of bursty data and the emerg-
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ing multimedia traffic. Therefore, an adaptive and dynamic
bandwidth allocation is essential.

A call admission control scheme was proposed in [20].
This scheme is adaptive to changing traffic by evaluating the
network conditions before each new call can be established.
However, this scheme cannot guarantee the more stringent
QoS parameter as the bandwidth is only reserved at the cell
where the new call is initiated, and thus subsequent hand-
off calls have higher risks of being dropped.The shadow
cluster conceptproposed by Levine et al. allows predictive
bandwidth allocation [8], wherein upon each call set up re-
quest, the mobile needs to provide the bandwidth require-
ments and accurate mobility parameters (position and move-
ment). Such information is passed to the base stations of the
cell that the mobile resides as well as the neighboring cells,
all of which reserve the bandwidth in advance accordingly.
This scheme is shown to be able to guarantee the QoS. The
major drawback is the requirement of the detailed trajectory
information and the signaling involved for each call setup.

Another adaptive bandwidth reservation scheme was pro-
posed by Oliveira et al. [14], in which the bandwidth is
allocated for a new call in the cell where the call request
originates, and in addition the bandwidth is reserved in all
neighboring cells. When a handoff occurs, similar band-
width allocation and reservation are carried out, and reserved
bandwidths in some original neighboring cells are released.
The novelty of the scheme is that the amount of bandwidth
reserved can be dynamically adjusted, reflecting the actual
traffic conditions in the network. A similar approach was
proposed in the adaptive admission control scheme by Mis̆ić
et al. [11]. Resource estimations are triggered by the events
of call handoff, origination and termination. Bandwidths re-
served for possible handoffs are estimated using the “spatial
activity factors”, providing an approximate control of the
QoS. However, the computational and signaling complexi-
ties of these approaches are still heavy due to the updates
required for each call event.

We recently proposed a dynamic call admission sche-
me [21] based on a periodical control, similar to the one
proposed by Naghshineh and Schwartz [12]. The SDCA can
preciselyguarantee the target call dropping probability while
at the same time maximizing the channel utilization. The
precision is obtained by taking into account the time depen-
dence of the call dropping probability and the effect of the
non-neighboring cells. In addition, it also greatly improves
over the Gaussian approximation commonly used [7,12].
However, this also requires periodic status information ex-
change among different cells.

The paradox, however, is that all proposed dynamic band-
width allocation schemes require the prior knowledge of the
traffic parameters or/and user mobility parameters. Under
such conditions, the fixed bandwidth assignment based on
the guarded channel scheme can yield optimal solutions for
steady state [16], but cannot adapt to changing traffic condi-
tions. In addition, most of the proposed schemes require the
status information exchange among different cells in order
to dynamically readjust the control parameters, thus making

them difficult to be used in actual deployment.Our major
motivationin this paper is to design an adaptive and dynamic
bandwidth allocation scheme that can overcomethese two
major deficiencies. The main features of the proposed algo-
rithm are:

• The estimation is doneon-line andperiodically, hence,
it can effectively adapt to the changing traffic. This is
particularly suitable for the emerging multimedia type of
traffic in that the statistical behavior of the traffic is either
not available or is difficult to obtain.

• The bandwidth allocation is implemented by aproba-
bilistic mechanism, which can reserve the bandwidth in
an efficient statistical multiplexing manner. This elimi-
nates the need to reserve bandwidth explicitly for each
call set up. In addition, this can spread new arrivals
evenly over a control period, thus leading to more effec-
tive and stable control.

The rest of the paper is organized as follows. We de-
scribe the bandwidth allocation algorithm and on-line esti-
mation algorithm in section 2. In section 3, we study the
performance of our proposed bandwidth allocation scheme
through simulations, and further investigate the impact on its
performance under a variety of changing traffic conditions.
We present the conclusion in section 4.

2. The adaptive bandwidth allocation algorithm

We consider a cellular network consisting of close packed
hexagonal cells and using a fixed channel allocation scheme.
Each cell has a capacity ofN channels. New calls arrive in
cell i at a rate ofλi . Connected calls terminate at a rate ofµ

(i.e., 1/µ is the average call duration time). In addition, calls
hand off from cellk to a neighboring celli at a rate ofhik
per call. Lethk ≡∑i hik be the handoff rate per call out of
cell k.

The bandwidth allocation algorithm is executed in a dis-
tributed and periodic fashion. Each cell executes the identi-
cal algorithm based on local estimations. The length of the
control period isT . At the beginning of a control period,
the bandwidth allocation algorithm determines the amount
of bandwidth reserved in the next control period for the par-
ticular cell by taking into consideration the network traffic
conditions. Notice that such bandwidth reservation is done
for all potential handoffsin a control period, thus eliminat-
ing the need for reserving bandwidth for each call required in
other schemes [8,14]. More importantly, this enables a more
efficient statistical multiplexing, leading to a more effective
use of the bandwidth. Before we present the bandwidth allo-
cation algorithm, we first summarize its key features below:

(1) The QoS requirement that the algorithm provides is the
dropping probability (PQoS). We calculate an expres-
sion of thePQoS for thecall acceptance ratioai , which
is defined as the fraction of new calls to be admitted into
cell i in the coming control period. Instead of using it
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to determine an admission threshold (i.e., the number of
new calls that are allowed) as in a guard channel pol-
icy, we stochastically accept each new call with proba-
bility ai , which can spread the new calls uniformly over
the period. This avoids a sudden overload of the network
at the beginning of the control period during congestion,
leading to a more effective and stable control.

(2) We derive the call dropping probability as atime-
dependent functionDi(t) in a cell while taking into ac-
count itsfinite capacity. It greatly improves over the
Gaussian approximation commonly used [7,12]. We
then compute the average dropping probabilityD̃i as in
equation (17) over a control period, taking into account
its time dependence. This increases the precision over a
single-value approximation within the control period.

The major computational complexity of the control algo-
rithm is to obtain the acceptance ratio by solving the non-
linear equation (18) for the average dropping probability on-
line. However, since the control is stochastic, a coarse-grain
integration of the average dropping probability is already
sufficient.

To derive the control algorithm, the key is to obtain the
acceptance ratioai for cell i via equation (18) according
to the following steps: (a) the arrival rate, the handoff rate
and the average channel occupancy in the local cell are esti-
mated on-line in section 2.1; (b) the time-dependent survival
probability of a call in a cell is computed with the estimated
handoff rate in section 2.2 to be used in the following step;
(c) these parameters are used to compute the evolution of the
mean〈ni(t)〉 and varianceσi(t)2 of the time-dependent oc-
cupancy distribution in each cell in section 2.3; (d) in turn,
these enable us to find the evolution of the dropping proba-
bility in section 2.4, prescribed by the off-line solution to a
diffusion equation applicable to sufficiently large systems.

2.1. The on-line estimation algorithm

The on-line estimation algorithm is developed to reduce the
signaling load required in most dynamic call admission al-
gorithms [7,8,11,12,21]. For example, in [21], celli has
to obtain status information from all cells that have poten-
tial handoffs at the beginning of each control period. For
all neighboring cellsk, the signaled parameters include the
channel occupancynk0, the traffic arrivalλk and the accep-
tance ratioak in previous control period. In addition, it has
to pass exactly the same set of parameters of its own (ni0, λi
andai) to all those cells. This requires a significant amount
of signaling. One potential solution is to enlarge the control
periodT so as to reduce the signaling frequency. However,
this can result in the inaccuracy in computing the channel oc-
cupancy distribution, since statistical uncertainty grows with
time. More seriously, if the traffic condition changes in any
cell, the control algorithm will not be able to adapt its control
parameters in time. These two factors hinder the deployment
of such algorithms in actual implementation.

To overcome this limitation, an on-line estimation algo-
rithm is implemented by restricting the use of information
to those only from the local celli, while the status of the
neighboring cells are derived by estimation rather than ac-
tual signaling. An exponential smoothing technique from
time series analysis is adopted to compute the expected ar-
rival rate from the observed values. Noticeably, a similar
technique was used in TCP adaptive retransmission to esti-
mate the round-trip time (RTT) [6].

Concretely, letλ(o)i (j ) be the observed arrival rate in celli
for thej th control period. This value is needed and is avail-
able at the beginning of the(j +1)th control period (i.e., the
end ofj th control period). Letλ(e)i (j ) be the estimated ar-
rivals for thej th control period (at the beginning of thej th
control period). Using exponential smoothing, we have

λ
(e)
i (j + 1) = α1λ

(e)
i (j )+ (1− α1)λ

(o)
i (j ). (1)

Under the uniform handoff rate case, the handoff rateh can
also be obtained similarly:

h
(e)
i (j + 1) = α2h

(e)
i (j )+ (1− α2)h

(o)
i (j ). (2)

For the observed channel occupancyni0(j + 1) at the be-
ginning of the(j + 1)th control period, we note that it con-
sists of two components. First, thecontrollablecomponent
consists of the channels occupied by calls admitted to celli

during thej th control period. It is directly controlled by the
admission actions of the local cell, and is approximated by
ai(j)λ

(o)
i (j )T . Secondly, thebackgroundcomponent con-

sists of the channels occupied by all the ongoing calls which
were admitted in the previous control periods, and handoff
calls which entered the cell during thej th period or before-
hand. The background occupancies cannot be controlled di-
rectly by the actions of the local cell, but it is expected to
exhibit some long term statistical behavior given the traffic
does not change too rapidly. This will be further elaborated
using examples in section 3. LettingN(o)(j) be theobserved
background channel occupancyat the end of thej th control
period, we have

N(o)(j) = ni0(j + 1)− si(T )ai(j)λ(o)i (j )T , (3)

wheresi(t) is the survival probability of a call in celli av-
eraged over a time intervalt , the expression witht = T

being the average over the entirej th control period.si (t) is
computed in the following subsection.

The estimatedbackground channel occupancy for the
(j + 1)th control period is given by

N(e)(j + 1) = α3N
(e)(j)+ (1− α3)N

(o)(j). (4)

Notice that the coefficientsαi (i = 1,2,3) used in equa-
tions (1), (2) and (4) have to be properly selected tosmooth
all the estimated values. In general, a small value ofαi (thus,
a large value of 1− αi ) can keep track of the changes more
accurately, but is perhaps too heavily influenced by tempo-
rary fluctuations. On the other hand, a large value ofαi is
more stable but could be too slow in adapting to real traffic
changes. In our experiment, we find the setting ofα1 andα2
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between 0.6 and 0.7, andα3 between 0.8 and 0.9 are ade-
quate for the estimation.

2.2. The survival probability for uniform handoff rate

In this subsection, we present the derivation for the survival
probability for uniform handoff rate (hik = h/6). Specifi-
cally, we use the estimated value ofh = h(e) obtained at the
beginning of each control period.

Consider the single-call transition probabilityfik(t) that
an ongoing call in cellk at the beginning of the control pe-
riod (t = 0) is located in celli at timet . In particular,fii (t)
is the survival probability of a call in celli at time t . For
an effective control enforcing dropping probabilities of the
order 10−3–10−2, we assume that essentially all calls hand
off successfully, resulting in the evolution equation

dfik(t)

dt
= −

∑
j

Jij fjk(t) and fik(0) = δik, (5)

whereJik is the transition matrix given byJii = hi +µ and
Jik = −hik for i 6= k. The solution to (5) is

fik(t) =
[
exp(−J t)]

ik
. (6)

The computational complexity of this matrix operation can
be reduced by considering the off-diagonal terms as pertur-
bations to the diagonal part ofJ . Each term in the resultant
perturbation series offik(t) corresponds to the contribution
of a path connectingk and i by cell hopping. While the
perturbation technique is applicable to non-uniform handoff
rates in general [21], results for the case of uniform rates
is particularly illustrating. Notice that the matrixJ can be
written as

J = J0+ J1, (7)

where

(J0)ik = (hk + µ)δik,
(J1)ik =

{−hik, k, i = nearest neighbors,
0, otherwise.

(8)

For homogeneous handoff rates,hk = h andhik = h/6.
ConsideringJ1 as the perturbation, we have

[
exp(−J t)]

ik
=
∞∑
r=0

(−t)r
r!

[
J r0 +

(
J r−1

0 J1+ · · ·

+ J1J
r−1
0

)+ · · · ]
ik
. (9)

The zeroth-order term consists of those terms in (9) which
contain noJ1. Hence, the zeroth-order contribution goes
only to i = k, with

q0(t) =
∞∑
r=0

(−t)r
r!

(
J r0
)
ii
= exp

[−(h+ µ)t]. (10)

It corresponds to the case that no handoff events take place
between time 0 andt .

Figure 1. (a) A 19-cell hexagonal cellular network with wrap-around con-
nection. (b) Topology of paths connectingk = i.

The first-order terms consist of one and only oneJ1.
Since the elements ofJ1 are nonzero only for neighboring
cells, the first-order contributions go only to neighboring
cellsi andk, with

q1(t)=
∞∑
r=0

(−t)r
r!

×
[
(h+ µ)r−1h

6
+ · · · + h

6
(h+ µ)r−1

]
= ht

6
exp

[−(h+ µ)t]. (11)

It corresponds to the event that a call is handed off from
cell k to i.

Higher order contributions can be evaluated similarly.
For a path withn hops along the path fromk to i, we ob-
tain

qn(t) = 1

n!
(
ht

6

)n
exp

[−(h+ µ)t]. (12)

This equation can be intuitively interpreted by counting the
number of handoff events along the path. Since all hopping
and termination events are assumed to take place indepen-
dently at the same rate, the occurrence ofn such events in
time t obeys a Poisson distribution with mean(h + µ)t.
A path with n hops requires each of then events to be a
handoff to a specified neighboring cell, excluding the other
five neighbors and the termination event. Hence, the proba-
bility qn(t) is given by[h/6(h+ µ)]npn, where the Poisson
distributionpn = [(h+ µ)t]n exp[−(h+ µ)t]/n!, resulting
in equation (12).

Hence,fik(t) is obtained by summing over all possible
paths betweenk and i. For the cellular network in fig-
ure 1(a), figure 1(b) shows the example ofk = i, in which
each diagram represents the topology of a path connectingi

to itself, with vertices and edges representing cells and paths,
respectively. Hence, there are one path of 0 hops, no path of
1 hop, six paths of 2 hops and twelve paths of 3 hops, leading
to

fii (t) = q0(t)+ 6q2(t)+ 12q3(t)+ · · · . (13)

Sinceht is the average number of hops in timet , the re-
sultant perturbation series is rapidly converging forht up to
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O(1). For a handoff rateh as high as 0.05 s−1 andt = 20 s,
µ = 0.005 s−1, the computed values forfii (t) are lower
than the true values by 1% up to 2 hops, and 0.3% up to
3 hops.

The survival probability averaged over timet is given by

si(t) = 1

t

∫ t

0
dt ′ fii (t − t ′), (14)

whose closed form can be easily obtained using integration
by parts.

2.3. The mean and variance of the occupancy distribution

The channel occupancy distribution at a cellpni (t) is deter-
mined by the superposition of the ongoing calls and the new
calls admitted to the network. Based on the estimation ob-
tained in section 2.1, the mean of the occupancy distribution
pni (t) in cell i at timet of the(j + 1)th control period con-
sists of both the background and controllable components,
given by〈
ni(t)

〉 = N(e)(j + 1)+ si (t)ai(j + 1)λ(e)i (j + 1)t, (15)

where the background componentN(e)(j +1) is obtained in
equation (4),λ(e)i (j + 1) is the estimated new call arrival in
the next(j+1)th control period (equation (1)), andai(j+1)
is the acceptance ratio for the next control periodthat needs
to be computed.

Similarly, we can obtain the estimation for thevariance
σi(t)

2 of the channel occupancy distribution at timet . As
it turns out that the channel occupancy distribution can be
approximated by a Poisson one, we take the variance to be
the same as the mean〈ni(t)〉.

The Poisson nature of the channel occupancy is justi-
fied for the new calls within the same control period, ei-
ther directly arriving at the local cell, or entering after first
arriving at a neighboring cell. It is also a good approx-
imation for handoff calls entering the local cell, provided
that they are only a small fraction of the active calls in the
originating cells. However, the Poisson assumption is only
a rough approximation for the surviving calls in the local
cell. Indeed, the number of calls surviving from the previ-
ous control periods obey a binomial distribution with vari-
ancefii (t)[1− fii (t)]ni0, rather than a Poisson distribution
with a slightly larger variance offii (t)ni0. As a result, this
discrepancy leads to an underestimation of the variance, and
hence, a slight overprovision of the bandwidth. Neverthe-
less, as justified by the results in section 3, the approximation
is adopted because of the reduced computational complexity
at the expense of only a slight and acceptable overprovision.

2.4. The call dropping probability

Now we introduce the time-dependent call dropping proba-
bility Di(t) for cell i. The dropping probability can be ex-
pressed in terms of the quantitiesni0 (channel status at the
beginning of a control period),〈ni(t)〉 (themeanof the chan-
nel occupancy distribution) andσi(t)2 (the varianceof the

channel occupancy distribution). It is obtained by solving
the diffusion equation describing the evolution of the chan-
nel occupancy distribution while taking into account thefi-
nite capacityof each cell. The derivation is outlined in ap-
pendix, with the result

Di(t) = 2
exp[−ξi(t)2/2]√

2πσi(t)2
+ 2
[〈ni(t)〉 − ni0]

σi(t)2
H
(
ξi(t)

)
,

(16)
whereξi(t) ≡ (N − 〈ni(t)〉)/σi (t) is the normalized va-
cancy in celli at timet , with N being the capacity of celli,
andH(x) is related to thecomplementary error functionvia
H(x) = erfc(x/

√
2)/2 [15]. The〈ni(t)〉 andσi(t)2 are the

meanand varianceof the channel occupancy distribution,
which are given in section 2.3.

The average dropping probability over a control period is
obtained by

D̃i = 1

T

∫ T

0
dt Di(t). (17)

For an on-line periodic control, the complexity of the inte-
gration could be very high. However, since our control is
based on a probabilistic model, the precision for integration
needs not be high. We found that it is sufficient to use a
7-point Simpson rule [15]. The acceptance ratioai can then
be easily obtained by solving numerically

D̃i = PQoS. (18)

At low traffic, it may happen that̃Di < PQoS even for
ai = 1. Thenai is set to 1. Similarly, at high traffic,ai is
set to 0 ifD̃i > PQoSeven forai = 0.

3. Results

Simulations were performed on a hexagonal cluster of
19 cells given in figure 1. To alleviatefinite size effects, we
implement periodic connections on the 3 pairs of opposite
sides of the cluster (wrap-around). The parameters used in
the simulation are:N = 100,µ = 0.005 s−1, hi = h =
0.01 s−1, T = 20 s, andPQoS= 0.01. Under such a setting,
a connection lasts on average 200 s and the mobile hands off
twice during its life time. The coefficientsα1 andα2 used
are 0.6, unless specified otherwise. Except for the figures 13
and 14, the handoff rate is assumed to be given.

We first compare the result with that of SDCA proposed
in [21]. Figure 2 shows that both schemes can guarantee
the target call dropping probability (PQoS = D̃i = 0.01),
but the scheme based on local parameter estimation has a
slight overprovision of the bandwidth, thus yielding a call
dropping probability slightly lower than the target. This is
caused by the conservative estimation in the control algo-
rithm, partly due to the Poisson approximation for thevari-
ance. Notice that this is also evident from the utilization
curve shown in figure 3.

We next present the results when the traffic condition
changes, by considering the scenario that the traffic input
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Figure 2. The comparison of call dropping probability with the SDCA.

Figure 3. The comparison of channel utilization with the SDCA.

Figure 4. The evolution of the traffic input scaled by the factorP .

changes periodically, as is best reflected from daily tele-
phone operations. Specifically, the traffic input evolves as
the staircase function shown in figure 4, in which each step
of the staircase is 40 control periods or 800 s. The parame-
terP is the scaling factor, and the traffic changes in steps of
0.2P .

Figure 5. The dynamic call dropping probability for each control period at
P = 2 s−1.

Figure 6. The traffic input with scaling factorP increased from 0.4 to
12 s−1.

Figure 5 demonstrates the dynamic behavior of the call
dropping probability for each control period when the net-
work is under saturation loadingP = 2 s−1. In this case, the
long term call dropping probability is maintained at 0.0085
(below the target dropping probability 0.01). The utilization
obtained is 0.81. The new call blocking probability is 0.67
caused by the overloading condition. One observes from fig-
ure 5 that the temporal behavior of the call dropping prob-
ability is also periodic, well matching the periodic changes
of the traffic input. In addition, careful studies show that the
target call dropping probability is violated for the first few
control periods when the trafficλi changes, due to inaccu-
rate estimations of the traffic. Once the estimation becomes
stable, the target dropping probability is guaranteed for sub-
sequent control periods with the same traffic.

We next investigate the performance under fluctuating
traffic conditions. We consider a similar traffic pattern but
with increasing overall traffic intensity given in figure 6.
This is the same as previous one shown in figure 5 except
that the scaling parameterP increases after every long cy-
cle of 360 control periods. Figure 7 demonstrates that the
cumulative average of the call dropping probability is still
well maintained below the target. The call dropping prob-
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Figure 7. The call dropping probability versus changingP .

Figure 8. The channel utilization versus changingP .

ability for each cycle (i.e., for a fixedP ) is also presented
in figure 7. Notice that the cumulative average is consider-
ably lower than the individual measurements, but the two
converge when the scaling factorP becomes significantly
large, as expected. The corresponding utilization and new
call blocking probability are plotted in figures 8 and 9, re-
spectively. The high blocking probability for new calls is a
consequence of the overloaded traffic, which is the range
of interest. This clearly demonstrates the robustness and
stability of our bandwidth allocation mechanism. Under
such heavy loading, the channel utilization is maintained at
over 80%. This also illustrates the fact that on average about
20% of bandwidth is reserved for handoff in order to main-
tain the target call dropping probability.

We next consider more volatile traffic conditions, and
study the impact on the call dropping probability of different
estimation coefficientsαi (i.e.,α1 andα2, since the handoff
rate is assumed to be given). While largerαi ’s yield better
performance at the steady state, smallerαi ’s are necessary
to cope with volatility. The input traffic follows a periodic
change given in figure 10, withn being the number of con-
trol periods. Note that under the given system parameters,
the system saturates when the average traffic input is 0.5 s−1,
therefore, under both low input (λ = 1 s−1) and high input

Figure 9. The new call blocking probability versus changingP .

Figure 10. The traffic input with periodic change.

Figure 11. The call dropping probability versus adjustedα values.

(λ = 4 s−1), the system is under saturation. Figure 11 de-
scribes the behavior of the call dropping probability under
a variety of traffic input and different values ofαi . Specifi-
cally, curve 1 shows the case ofn = 150 (i.e., the traffic is
changed every 150 control periods) andαi = 0.6. In this
case the target call dropping probability is well maintained
aroundPQoS = 0.01. Curve 2 presents a similar scenario
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Figure 12. The dynamic call dropping probability for periodic traffic input.

Figure 13. The call dropping probability based on local estimation of the
handoff rates.

with the sameαi , but the traffic is changing more frequently,
i.e., the traffic is changed everyn = 40 control periods. The
result from curve 2 shows that the target dropping probabil-
ity cannot be satisfied. The major reason is that the cho-
sen value ofαi = 0.6 is not adequate for keeping track of
such frequent traffic changes. Adjusting the value ofαi can
clearly improve the performance guarantee. The result is il-
lustrated in curve 3 of figure 11 withαi set to 0.1, and the
target dropping probability is indeed guaranteed. However,
the target cannot be met under more frequent traffic updates
such as curve 4 in the same figure, in which the traffic is
updated everyn = 10 control periods.

This can also be better observed from the dynamical be-
havior shown in figure 12. The call dropping probability ob-
tained reflects the periodic change of the input traffic every
n = 40 control periods. More importantly, at the beginning
of the traffic change from low input (λ = 1 s−1) to high
input (λ = 4 s−1), i.e., every 80 control periods, the instan-
taneous call dropping probability is increased significantly,
as much as about 10–15 times the target call dropping prob-
ability (PQoS= 0.01) in figure 12. This is caused by an ex-
cessive underestimation of the input traffic during the initial
control periods when traffic increases. Such an impact can

Figure 14. The call dropping probability with estimated handoff rates.

Figure 15. The estimated handoff rate versus time.

be leveraged over longer control periods, such asn = 150
whenαi = 0.6 andn = 40 whenαi = 0.1, but clearly can-
not be compensated undern = 10 with anyαi setting since
the call dropping probability in the single control period im-
mediately after the hike in call rate can account for more
than 10 periods’ target call dropping probability. Therefore,
the target call dropping probability cannot be guaranteed for
n = 10 shown in curve 4 in figure 11.

Finally, we are interested in the system performance
when the handoff rates are estimated. First we adjust the
traffic input and use the estimation algorithm to trace the
handoff changes accordingly. Figure 13 essentially recap-
tures the call dropping probability shown in figure 2. The
only difference is that in figure 13 the handoff rate is on-line
periodically estimated as in equation (2), thus the survival
probabilityfii (t) is computed according to equation (13). It
shows that the cumulative (target) call dropping probability
can be guaranteed. Figure 14 presents the results for the traf-
fic input given in figure 6, and is similar to those presented
in figure 7. Next we assume that the user mobility pattern is
periodically changed, specifically, the user handoff rateh is
oscillated between 0.05 and 0.1 every 200 control periods.
Figure 15 illustrates the handoff rate obtained by the estima-
tion algorithm, which accurately reflects the real changes.
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Figure 16. The call dropping probability for periodic handoff rate.

The corresponding call dropping probability is on target and
plotted in figure 16.

4. Conclusion

In this paper, we introduce a novel adaptive bandwidth allo-
cation scheme for mobile wireless networks based on local
on-line parameter estimations. The novelties of the proposed
scheme are: (1) both estimation and bandwidth allocation
are carried out periodically, thus, can effectively adapt to the
changing traffic conditions; (2) the estimation is restricted
to the local cell, thus, eliminating the signaling overhead of-
ten required by all existing bandwidth allocation schemes;
(3) the allocation algorithm is based on a stochastic control,
which results in an efficient use of the bandwidth and leads
to an effective and stable control. The results demonstrate
that the proposed adaptive bandwidth allocation can guar-
antee the predefined bound on the call dropping probabil-
ity under changing traffic conditions, while at the same time
achieving high bandwidth utilization.

One limitation is that the control algorithm still relies on
the assumptions that the arrival obeys a Poisson process and
call durations follow an exponential distribution, other dis-
tributions such as Pareto distribution for data traffic [2] and
hyper-Erlang distribution [3] will be considered in the fu-
ture work. In addition, we are investigating other QoS para-
meters guarantee such as end-to-end delay and considering
multiple types of traffic [9,14,17].

Appendix. The time-dependent call dropping
probability

For a given cell, letpn(t) be the probability of havingn oc-
cupied channels at timet . Assume that the total arrival and
departure rates for calls in celli are3 and M, respectively.
The evolution equation forpn(t) is then given by

dpn(t)

dt
= 3pn−1(t)− (3+M)pn(t)+Mpn+1(t),

n < N, (A.1)

dpn(t)

dt
= 3pn−1(t)−Mpn(t), n = N. (A.2)

In the limit of largeN , the evolution equation (A.1) re-
duces to a diffusion equation for the continuous distribution
P(x, t), wherex ≡ n/N :

∂P (x, t)

∂t
= −v ∂P (x, t)

∂x
+D∂

2P(x, t)

∂x2 , (A.3)

wherev ≡ (3 −M)/N is the drift velocity, andD ≡ (3+
M)/2N2 is the diffusion coefficient, in analogy with particle
diffusion. The boundary condition atx = 1 can be obtained
from equation (A.2), yielding

vP (x, t) = D ∂P(x, t)

∂x
atx = 1. (A.4)

The other boundary condition isP(x, t) = 0 atx = −∞.
The initial condition isP(x, t) = δ(x − x0) at t = 0, where
x0 = ni0/N .

The diffusion equation is solved by Laplace transform.
At x = 1, the solution is

P(1, t)= 2
exp[−(1− x0− vt)2/(4Dt)]√

4πDt

+ v

D
H

(
1− x0− vt√

2Dt

)
. (A.5)

The dropping probability is given byD(t) = pN(t) =
P(1, t)/N , which reduces to equation (16).
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