
1

Gossip-Based Ad Hoc Routing

Zygmunt J. Haas Joseph Y. Halpern Li Li
School of Electrical and Computer Engineering/Department of Computer Science

Cornell University
haas@ece.cornell.edu {halpern,lili}@cs.cornell.edu

Abstract—Many ad hoc routing protocols are based on some variant of
flooding. Despite various optimizations, many routing messages are prop-
agated unnecessarily. We propose a gossiping-based approach, where each
node forwards a message with some probability, to reduce the overhead of
the routing protocols. Gossiping exhibits bimodal behavior in sufficiently
large networks: in some executions, the gossip dies out quickly and hardly
any node gets the message; in the remaining executions, a substantial frac-
tion of the nodes gets the message. The fraction of executions in which most
nodes get the message depends on the gossiping probability and the topol-
ogy of the network. In the networks we have considered, using gossiping
probability between 0.6 and 0.8 suffices to ensure that almost every node
gets the message in almost every execution. For large networks, this sim-
ple gossiping protocol uses up to 35% fewer messages than flooding, with
improved performance. Gossiping can also be combined with various opti-
mizations of flooding to yield further benefits. Simulations show that adding
gossiping to AODV results in significant performance improvement, even in
networks as small as 150 nodes. We expect that the improvement should be
even more significant in larger networks.

I. INTRODUCTION

An ad hoc network is a multi-hop wireless network with no
fixed infrastructure. Rooftop networks and sensor networks are
two existing types of networks that might be implemented using
the ad hoc networking technology. Ad hoc networks can be use-
fully deployed in applications such as disaster relief, tetherless
classrooms, and battlefield situations.

In ad hoc networks, the power supply of individual nodes is
limited, wireless bandwidth is limited, and the channel condition
can vary greatly. Moreover, since nodes can be mobile, routes
may constantly change. Thus, to enable efficient communica-
tion, robust routing protocols must be developed.

Many ad hoc routing protocols have been proposed. Some,
such as LAR [13], GPSR [12], and DREAM [1] assume that
nodes are equipped with GPS hardware and thus know their lo-
cations; others, such as DSR [11], AODV [18], ZRP [9], and
TORA [17], do not make this assumption. Essentially all proto-
cols that do not use GPS (and some that do, such as LAR and
DREAM) make use of flooding, usually with some optimiza-
tions.

Despite the optimizations, in routing protocols that use flood-
ing, many routing messages are propagated unnecessarily. In
this paper, we show that gossiping—essentially, tossing a coin
to decide whether or not to forward a message—can be used to
significantly reduce the number of routing messages sent.

It follows from results in percolation theory [7], [15] that gos-
siping exhibits a certain type of bimodal behavior. Let the gossip
probability be p. Then, in sufficiently large “nice” graphs, there
are fractions θS(p) and θR(p) such that the gossip quickly dies

The work of Z. Haas was supported in part by NSF under grant number ANI-
9980521 and ONR under contract number N00014-00-1-0564. The work of
J. Halpern and L. Li was supported in part by NSF under grants grants IRI-96-
25901, IIS-0090145, and NCR97-25251, and ONR under grants N00014-00-1-
03-41, N00014-01-10-511, and N00014-01-1-0795.

out in 1− θS(p) of the executions and, in almost all of the frac-
tion θS(p) of the executions where the gossip does not die out, a
fraction θR(p) of the nodes get the message. Moreover, in many
cases of interest, θR(p) is close to 1. Thus, in almost all execu-
tions of the algorithm, either hardly any nodes receive the mes-
sage, or most of them do. Ideally, we could make the fraction
of executions where the gossip dies out relatively low while also
keeping the gossip probability low, to reduce the message over-
head. The goal of this paper is to investigate the extent to which
this can be done. Our results show that, by using appropriate
heuristics, we can save up to 35% message overhead compared
to flooding. Furthermore, adding gossiping to a protocol such as
AODV not only gives improvements in the number of messages
sent, but also results in improved network performance in terms
of end-to-end latency and throughput. (For readers unfamiliar
with AODV, a brief overview is given in SectionV-A.) We ex-
pect that the various optimizations applied to flooding by other
protocols (for example, the cluster-based scheme of [16]) can
also be usefully combined with gossiping to get further perfor-
mance improvements.

We are certainly not the first to use gossiping in networking
applications. For example, it has been applied in networked
databases to spread updates among nodes [6] and to multicast-
ing [2]. However, in almost all of the earlier work on gossiping,
it is assumed that any node in the network can send a message
to any other node, either because there is a direct link to that
node or a route to that node is known. Gossiping proceeds by
choosing some set of nodes at random to which to gossip. We
do not have the luxury of being able to make such an assumption
in the context of ad hoc networks. Our problem is to find routes
to different nodes.

In an ad hoc network, if a message is transmitted by a node,
due to the broadcasting nature of radio communications, the
message is usually received by all the nodes one hop away from
the sender. Because of the fact that wireless resources are ex-
pensive, it makes sense to take advantage of this physical-layer
broadcasting feature of the radio transmission. In our gossiping
protocol, we control the probability with which this physical-
layer broadcast is sent.

There has been some recent work on applying gossiping in
ad hoc networks, but the focus and thus the techniques used
have been very different from our work. Vahdat and Becker
[22] apply gossiping to ad hoc unicast routing. However, their
usage of gossiping is very different from ours. In their work,
they try to ensure that messages are eventually delivered even if
there is no connected path between the source and the destina-
tion at any given point in time. As long as there exists a path
using communication links at some point in time, messages can
be delivered through a random pair-wise exchanges among mo-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

2

bile hosts. Their techniques are not intended for (and would
not perform well in) our setting, where we are trying to find
routes that we assume exist (because network partition is a rare
event). Chandra et al. [4] use a gossiping mechanism to improve
multicast reliability in ad hoc networks; they do not use gossip-
ing to reduce the number of messages sent. Indeed, they start
with an arbitrary, possibly unreliable, multicast protocol to mul-
ticast a message. They then use gossiping (under the assumption
that routes are known) to randomly exchange messages between
nodes in order to recover lost messages. Heinzelman et al. [10]
have applied gossiping in data dissemination in wireless sen-
sor networks, using techniques similar in spirit to those of [22].
Again, the setting and results are quite different from ours. Ni
et al. [16] propose five different approaches to reduce broadcast
redundancy. One of them (briefly mentioned in a few sentences)
is gossiping. However, they do not study the properties of gos-
siping nor do they consider heuristics for dealing with problems
introduced by gossiping in realistic ad hoc network topologies.
Their experiments do show, however, that, in a 100-node net-
work, using gossiping can save messages.

The rest of this paper is organized as follows: Section II dis-
cusses the basic bimodal effect in more detail. Section III pro-
vides experimental evidence of the bimodal effect in networks
of reasonable size, and also gives a sense of how the probability
varies with the average degree of the network and initial con-
ditions. Section IV presents a number of heuristics that should
improve the performance of gossiping in networks of interests,
and investigates the extent to which they do so experimentally.
Section V shows that gossiping can help in practical settings, by
considering the effect of adding gossiping to AODV. We show
by simulation that even in networks with 150 nodes only, adding
gossiping to AODV can result in significant performance im-
provements on all standard metrics. We expect that this im-
provement will be even more significant in larger networks. Sec-
tion VI concludes our paper.

II. THE BIMODAL BEHAVIOR OF GOSSIPING

Since flooding is a basic element in many of the ad hoc rout-
ing protocols, as mentioned in Section I, we start by comparing
gossiping to flooding.

Our basic gossiping protocol is simple. A source sends the
route request with probability 1. When a node first receives a
route request, with probability p it broadcasts the request to its
neighbors and with probability 1 − p it discards the request; if
the node receives the same route request again, it is discarded.
Thus, a node broadcasts a given route request at most once. This
simple protocol is called GOSSIP1(p).

GOSSIP1 has a slight problem with initial conditions. If the
source has relatively few neighbors, there is a chance that none
of them will gossip, and the gossip will die. To make sure this
does not happen, we gossip with probability 1 for the first k
hops before continuing to gossip with probability p. We call this
modified protocol GOSSIP1(p, k).1

The performance of GOSSIP1(p, k) clearly depends on the
choice of p and k. Clearly, GOSSIP1(1,1) is equivalent to flood-

1Of course, the fact that gossiping has difficulties if a node has relatively few
neighbors is true not just initially. We return to this point in the next section
when we discuss optimizations.

ing. What happens in general? That depends in part on the
topology of the network (particularly the average degree of the
network nodes), the gossip probability p, and the initial condi-
tions (as determined by k). If we think of gossiping as spread-
ing a disease in an epidemic, this simply says that the likelihood
of an epidemic spreading depends in part on how many people
each person can infect (the degree), the likelihood of the infec-
tion spreading (the gossip probability), and how many people
are initially infected.

As we said in the introduction, gossiping and, in particular,
the performance of GOSSIP1(p,0) (that is, the scenario where
even the source gossips with probability p) has been well stud-
ied in the work on percolation theory [7], [15]. Quite a few
types of networks have been studied in the literature. In this
section, we focus on two of them. We first study regular net-
works, since they allow us to easily analyze how GOSSIP1 be-
haves with respect to different parameters, such as the gossip
probability, network size, and node degree, without other com-
plicating factors. We then study random networks constructed
as follows. Nodes are placed at random on a two-dimensional
area; an edge is placed between any pair of nodes less than a
fixed distance d apart. This type of random graph seems appro-
priate for modeling a number of applications involving ad hoc
networks. Nodes have a limited amount of transmission power,
and so can communicate only with reasonably close nodes. The
random placement can be viewed as modeling features such as
the random mobility of nodes and the random placement of sen-
sors in a large region.

The following theorem gives a sense of the type of results that
have been proved.

Theorem II.1: For all p ≥ 0, for all infinite regular graphs
G, and for almost all (i.e., a measure 1 subset) of the infinite
random graphs G constructed as above, if GOSSIP1(p,0) is used
by every node to spread a message, then there is a well-defined
probability θS

0 (p) < 1 that the message reaches infinitely many
nodes. Moreover, the probability θF

0 (p) that a node receives
the message and forwards it in an execution where the message
reaches infinitely many nodes is equal to θS

0 (p).2

Note that the probability of a message dying out (i.e., not
spreading to infinitely many nodes) is averaged over the exe-
cutions of the algorithm. That is, the theorem says that if we
execute the algorithm repeatedly, the probability that a message
does not die out in any given execution is θS

0 (p). On the other
hand, θF

0 (p) talks about the probability that a node receives and
forwards the message in a given execution of the algorithm. The
intuition behind the equality of θS

0 (p) and θF
0 (p) is easy to ex-

plain. A gossip initiated by a source n0 dies out if there is a
set of nodes N that disconnects n0 from the rest of the graph;
that is, every infinite path starting at n0 must go through a node
in N . Thus, θS

0 (p) is the probability that there is no discon-
necting set N such that none of the nodes in N forward the
message. (Note that N could consist of the singleton node n0

itself.) Similarly, the probability θF
0 (p) that a random node n

receives and forwards the message is precisely the probabil-
ity that there is no set N ′ such that N ′ disconnects n from n0

and none of the nodes in N ′ forwards the message. Therefore,

2Note that our bimodal effect is different from [2]. They describe a bimodal
behavior where either all or no process receives the multicast message.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

3

θS
0 (p) = θF

0 (p) =def θ0(p).
It follows from these results that, in an execution where the

message does not die out, the probability that a random node
receives the message is θ0(p)/p, since receiving the message is
independent of forwarding it. Thus, in terms of the notation used
in the introduction, θS(p) = θ0(p) and θR(p) = θ0(p)/p.

Let θS
k (p) be the probability that a message reaches infinitely

many nodes if GOSSIP1(p, k) is used. It is easy to see that
θS
1 (p) = θ0(p)/p, since the probability that the message reaches

infinitely many nodes using GOSSIP1(p, 1) is precisely the
probability that a message reaches infinitely many nodes using
GOSSIP1(p, 0) given that the source actually gossips. However,
note that the probability that a node receives and forwards a mes-
sage if GOSSIP1(p, k) is used, given that the message does not
die out, is still θ0(p). That is, the probability that a node receives
the message is independent of the choice of k. On the other
hand, it is not hard to see that if each node learns the network
topology in a zone of radius k (so that it can route a message
directly to any node in its zone), then the probability that a node
receives and forwards a message given that the message does
not die out is θk(p).

All these results are for infinite graphs. It is not hard to show
that essentially the same results hold for finite graphs, except
possibly near the boundary. In sufficiently large finite graphs,
there will be two types of executions: those where hardly any
node gets the message, and those where the message makes it
all the way to the boundary. It follows easily from the Central
Limit Theorem that, in sufficiently large graphs, in almost all
executions where the gossip does not die out, a fraction θ0(p)/p
nodes will get the message. That is, we expect the bimodal be-
havior: either hardly any nodes get the message, or a fraction
θ0(p)/p receive the message. As we shall see, in cases of in-
terest, θ0(p) is quite close to p. Thus, in almost all executions
of the algorithm in sufficiently large graphs, either hardly any
nodes receive the message, or most do.

This leads to a number of obvious questions:
• How large is “sufficiently large”?
• What is the behavior of θk(p) for different graphs of interest?
• What can be done to improve the performance of gossiping in
realistic settings?
We investigate these questions in the next two sections.

III. GOSSIPING IN FINITE NETWORKS

We did a number of experiments to investigate the behavior of
gossiping. We summarize some of the more interesting results
here. We assumed an ideal MAC layer for these experiments be-
cause we wanted to decouple the effect of the MAC layer from
the effect of gossiping. An ideal MAC layer is one that is not
subject to packet loss. When we consider more realistic sce-
narios in Section V, we use the IEEE 802.11 MAC layer. In
this section, we focus on regular graphs and the random graphs
discussed in the previous section.

Our first set of experiments involves “medium-sized” net-
works, with 1000 nodes. We start by considering a 20-row by
50-column grid (i.e., a regular graph of degree 4). We focus
on GOSSIP1(p, 4), since taking k = 4 produces a reasonable
tradeoff. (We report the effect of varying k towards the end of
this section.) The results depend in part on where we place the

route request source. As we would expect from the theoretical
arguments, the location of the source node does not affect the
fraction of nodes receiving the message. However, it does af-
fect the number of executions in which the gossip dies out. The
number of executions in which the gossip does not die out is
higher for a more central node, and lower for a corner node. We
report results here for the case where the route request source is
at the left boundary of row 10. Our experiments show that, on
average, the performance for other locations of the route request
source is somewhat better than the results reported here. The
results are illustrated in Figure 1. Notice that GOSSIP1(.72,4)
on the grid ensures that almost all nodes get the message, except
for a slight dropoff at distance greater than 50. This dropoff is
a boundary effect, which we discuss in more detail below. Note
that the graph in Figure 1(a) represents an average of 120 exe-
cutions of the protocol. With gossip probability .72 for this grid
size, in almost all the executions of the algorithm, almost all
nodes get the message.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.72,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.72,4)

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.65,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.65,4)

(c) (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.60,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.60,4)

(e) (f)

Fig. 1. The behavior of gossiping on a 20 × 50 grid.

The situation changes significantly if the gossip probability
is even a little less than .7. For example, the average perfor-
mance of GOSSIP1(.65,4) is shown in Figure 1(c). As the graph
shows, at distance 40, on average 58% of the nodes got the mes-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

4

sage. However, in this case, the graph is somewhat misleading.
The averaging is hiding the true behavior. As we would expect
from Theorem II.1, there is bimodal behavior. This is illustrated
in Figure 1(d). If we consider nodes at distance 15–45 (so as to
ignore initial effects and boundary effects), in 14% of the exe-
cutions, fewer than 10% of the nodes get the message; in 19%
of the executions, fewer than 20% of the nodes get the message;
in 59% of the executions, more than 80% of the nodes get the
message; and in 41% of the executions, more than 90% of the
nodes get the message.

If we lower the gossip probability further, we get the same
bimodal behavior; all that changes is the fraction of executions
in which all nodes and no nodes get the message. The dropoff
is fairly rapid. For example, Figure 1(e) and (f) describe the
situation for GOSSIP1(.60,4). By the time we get to probability
.6 on the grid, in only 4% executions of the algorithm is it the
case that more than 90% of the nodes get the message; in only
11% of the executions do more than 80% of the nodes get the
message; and in over 50% of the executions, fewer than 20% of
the nodes get the messages.

We also investigated the effect of the degree of the network
on gossiping. Not surprisingly, increasing the degree makes it
better and decreasing it makes it worse. In a 20 × 50 regular
network of degree 6, it suffices to gossip with probability .65 to
ensure that almost all nodes get the message in almost all exe-
cutions; with gossip probability .6, we start to see some dropoff.
(Again, the numbers given in the graph are actually the result
of averaging over a number of executions of the algorithm, and
mask the bimodal behavior observed in the executions.) On the
other hand, for a 20 × 50 regular network of degree 3, we need
to gossip with probability .86 to ensure that almost all nodes get
the message in all executions.

While easy to study, regular graphs are not typical of the
topology we expect in practical ad hoc networks. Random
graphs are a somewhat better model. We considered two fam-
ilies of random graphs. In the first, we randomly placed 1000
nodes in a 7500m × 3000m rectangular region, where a node
can communicate with another node if it is no more than 250
meters away. This results in a network with average degree 8.
Since real networks have boundaries, we did not experiment on
wrap-around meshes. As we shall see, dealing with nodes near
the boundary raises some interesting issues. The results of our
experiments are illustrated in Figure 2.

The results are qualitatively similar to those on the grid, as
we would expect. Indeed, the bimodal effect is particularly pro-
nounced with GOSSIP1(.65,4), as shown in Figure 2(d). If we
consider nodes at distance 15–35, Figure 2(d) shows, in 20% of
the executions, fewer than 10% of the nodes get the message; in
70% of the executions, over 90% of the nodes get the message,
and in 75% of the executions, over 80% of the nodes get the
message.

To consider what happens with a higher-degree network, we
also placed 1200 nodes at random in the same rectangular re-
gion; this results in a network with average degree 10. In this
network, it suffices to gossip with probability .65 to ensure that
almost all nodes get the message in almost all executions.

All the graphs above show a marked dropoff in probability for
nodes that are close to the boundary. This is not just an effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.75,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.75,4)

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.65,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.65,4)

(c) (d)

Fig. 2. Gossiping on a random network of average degree 8.

of averaging; this dropoff occurs in almost all executions of the
algorithm. The dropoff is due to two related boundary effects.
1. Distant nodes have fewer neighbors, since they are close to
the boundary.
2. Nodes at distance d from the source may well receive mes-
sage due to “back-propagation” from nodes at distance d′ > d
that get the message. Such back-propagation is not possible for
boundary nodes.
We discuss some techniques to deal with this dropoff in Sec-
tion IV-D.

We did one last set of experiments to better evaluate θk(p). In
these experiments, we used 1,000,000 nodes on a 1000 × 1000
grid, and placed the source at the center of row 10. This is far
enough away from the boundary to avoid significant boundary
effects.3 The results of using GOSSIP1(p, k) for particular val-
ues of p are illustrated in Figure 3. As these results show, the
bimodal effect is very marked by the time we get to such a large
network, and begins to closely approximate the results expected
from the theorem. Figure 4 shows how θS

4 (p) varies with p. As
we can see, if p is below .59, then the gossip dies out in almost
all executions. θS

4 (p) then increases very rapidly, going from 0
at .59 to almost 1 at .65. (The rapid increase in the case of in-
finite graphs follows from a deeper mathematical analysis, and
has been discussed in the percolation theory literature[7], [15].)

Finally, we considered how θS
k (p) and θR

k (p) varied with k
for a fixed value of p. As theory predicts, θR

k (p) does not change
at all with p. There is some effect on θS

k (p). Of course, since
θS
1 (p) = θS

0 (p)/p, there is a significant jump as k goes from 0 to

3Experimental results show that there are nontrivial boundary effects for val-
ues of p very close to .59 no matter where we place the source. Intuitively, this
is because for p very close to, but above .59, the probability of having a large
disconnecting set of nodes is nontrivial, and the boundary can help in forming
such sets.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 300 600 900 1200 1500

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.65,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.65,4)

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 300 600 900 1200 1500

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.60,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

Fraction of nodes receiving the message

GOSSIP1(0.60,4)

(c) (d)

Fig. 3. The behavior of gossiping on a 1000x1000 grid.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θS 4(
p)

gossip probability p

GOSSIP1(p,4)

Fig. 4. θS
4 (p) as a function of the gossip probability p on a 1000x1000 grid.

1. As k increases beyond 1, there is an increase in θS
k (p), but it is

not so significant. For example, θS
1 (.65) = .95, θS

2 (.65) = .98,
and θS

5 (.65) = 1; similarly, θS
1 (.6) = .53, θS

4 (.5) = .67, and
θS
10 = .73.

IV. HEURISTICS TO IMPROVE THE PERFORMANCE OF

GOSSIPING

The results of the previous section suggest an obvious way
that gossiping can be applied in ad hoc routing. Rather than
flooding, we use GOSSIP1(p,k) with p sufficiently high to guar-
antee that almost all nodes will receive the message in almost
all executions. We can practically guarantee that the destination
node receives the message, while saving a fraction 1−p of mes-
sages. In cases of interest, where the threshold probability seems
to be about .65–.75, this means we can ensure that all nodes get
the message using 25–35% fewer messages than flooding. No-
tice that, if the network is congested and every node has a con-
gestion dropping probability f , then to obtain the same results,
the broadcast probability needs to be p/f . If congestion is very
localized, then we can simply use p because it is not likely to

change the outcome of a given run of gossiping. However, the
general interaction between gossiping and congestion is a topic
that deserves further study.

The basic gossiping scheme can be optimized in a number of
ways, using ideas that have been applied to flooding and ideas
specific to gossiping. We discuss some optimizations in the re-
mainder of this section. This section is intended as a proof of
concept showing that gossiping is a worthwhile approach to ex-
plore. We do not attempt to do an exhaustive analysis to find the
optimal parameters.

A. A two-threshold scheme

In many cases of interest, a gossip protocol is run in conjunc-
tion with other protocols. If the other protocols maintain fairly
accurate information regarding a node’s neighbors, we can make
use of this information to improve the performance of GOSSIP1
further by a simple optimization.

In a random network, unlike the grid, a node may have very
few neighbors. In this case, the probability that none of the
node’s neighbors will propagate the gossip is high. In general,
we may want the gossip probability at a node to be a func-
tion of its degree, where nodes with lower degree gossip with
higher probability. To show the effect of this, we consider a
special case here: a protocol with four parameters, p1, k, p2,
and n. As in GOSSIP1, p1 is the typical gossip probability and
k is the number of hops with which we start gossiping with
probability 1. The new features are p2 and n; the idea is that
the neighbors of a node with fewer than n neighbors gossip
with probability p2 > p1. That is, if a node has fewer than
n neighbors, it instructs its immediate neighbors to broadcast
with probability p2 rather than p1. Call this modified protocol
GOSSIP2(p1, k, p2, n). To understand why the neighbors’ gos-
sip probability is increased if there are few neighbors, consider
the initiator of the gossip. Clearly, if none of its neighbors gos-
sip, then the gossip will die. If the initiator has many neighbors,
even if each gossips with relatively low probability, the proba-
bility that at least one of them will gossip is high. This is not the
case if it has few neighbors.

GOSSIP2 is not of interest in regular networks. However, in
random networks which typically have some sparse regions, it
can have a significant impact. For example, for the random net-
work with average degree 8 first considered in Figure 2, GOS-
SIP2(0.6,4,1,6) has better performance than GOSSIP1(0.75,4),
as shown in Figure 5, while using 4% less messages than GOS-
SIP1(0.75,4). Only when p ≥ 0.8 does GOSSIP1(p, 4) begin
to have the same performance as GOSSIP2(0.6,4,1,6); how-
ever, GOSSIP1(0.8,4) uses 13% more messages than GOS-
SIP2(0.6,4,1,6).

There may be other combinations of parameters for GOSSIP2
that give even better performance; we have not checked exhaus-
tively. The key point is that using a higher threshold for suc-
cessors of nodes with low degree seems to significantly improve
performance.

B. Preventing premature gossip death

As we have seen, the real problem with gossiping is that, if
we gossip with too low a probability, the message may “die out”
in a certain fraction of the executions. Measures can be taken to

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.75,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP2(0.6,4,1,6)

(a) (b)

Fig. 5. Gossiping with two thresholds vs. one on a random network of average
degree 8.

prevent this (for example, having successors of nodes with low
degree gossip with a higher probability) but, unfortunately, there
is no way for a node to know if a message is dying out. Never-
theless, a node may get some clues. One such clue is not getting
too many copies of the message. Suppose that a node x got the
message but does not broadcast it because its coin toss landed
“tails”. Further suppose that x has n neighbors. If the message
does not die out, then it would expect that all of its neighbors
would get the message as well, and thus, if the gossip probabil-
ity is p, it should get roughly pn messages from its neighbors.
If it gets significantly fewer than pn within a reasonable time
interval, then this is a clue that the message is dying out.

This suggests the following optimization of GOSSIP1 and
GOSSIP2. If a node with n neighbors receives a message and
does not broadcast it, but then does not receive the message
from at least m neighbors within a reasonable timeout period, it
broadcasts the message to all its neighbors. The obvious ques-
tion here is what m should be. If m is chosen too large, then
we may end up with too many messages. Our experiments show
that we actually get the most significant performance improve-
ment by taking m = 1. Let GOSSIP3(p, k,m) be just like
GOSSIP1(p, k), except for the following modification. A node
that originally did not broadcast a received message (because
its coin landed tails), but then did not get the message from at
least m other nodes within some timeout period, broadcasts the
message immediately after the timeout period. (The choice of
timeout period can be taken quite small. We discuss this issue in
details in Section V.) It may seem that such rebroadcasting can
significantly effect the latency of the message. However, as the
experiments discussed below show, if the parameters are chosen
correctly, latency is not a problem at all.

As Figure 6 shows, the performance of GOSSIP3(0.65,4,1)
is even better than that of GOSSIP1(0.75,4). However, GOS-
SIP3(0.65,4,1) sends only 67% of the messages sent by flood-
ing. By way of contrast, GOSSIP1(0.75,4) sends 75% of the
messages sent by flooding. Thus, we get better performance us-
ing GOSSIP3 while sending 8% fewer messages.

To examine the effect of GOSSIP3 on latency, we recorded
the number of timeout intervals a message experienced, using a
variable L, which was augmented every time a message was for-
warded after a timeout. Among all the messages sent by GOS-
SIP3(0.65,4,1), only 2% have L ≥ 1. Among these messages
with L ≥ 1, 95% of them have L ≤ 2. Thus, it seems latency is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP3(0.65,4,1)

Fig. 6. GOSSIP3 on a random network of degree 8.

not a problem here.

C. Retries

The bimodal distribution observed in the use of gossiping can
be viewed as a significant advantage. Once a route is found,
acknowledgments are propagated back to the source along the
route, so the source knows the route. If a route is not found
within a certain timeout period, there are two possibilities: ei-
ther there is no route at all, or the protocol did not detect it.
Our focus is on networks that are sufficiently well connected
that there typically is a route. However, when using a gossiping
protocol, there is always a possibility that a route will not be
found even if it exists. Of course, there is a simple solution to
this problem: simply retry the protocol. Thus, for example, the
probability of finding a route within two attempts to a node at
distance 25 using GOSSIP1(.65,4) in the random network with
average outdegree 8 is .95: the probability of a node not receiv-
ing a message in any given execution of the protocol is .23, and
executions are independent.

With retries, the bimodal message distribution works signifi-
cantly to our benefit. As we observed, with GOSSIP1(.65,4), in
72% of the executions, almost all nodes get the message. If we
pick a destination at random, in those executions where almost
all nodes get the message, the destination is likely to get the
message and a retry will not be necessary. On the other hand,
in those executions where hardly any nodes got the message,
a retry will probably be necessary. However, such failing gos-
sip attempts do not involve too many transmissions, since most
nodes do not get the message in any case.

Of course, retries increase latency, even if they do not signifi-
cantly increase the number of messages sent. This is especially
true in large networks, where the timeout period will have to be
large so as to allow the message to propagate throughout the net-
work. However, even here, the bimodal distribution can be used
to advantage to decrease the retry latency. Note that each mes-
sage must keep track of the number of hops it has taken. We can
modify the algorithm so as to require that any node that receives
a message with, say, 15 hop counts, forwards an acknowledg-
ment to the sender along that route with some probability. (The
probability can be chosen so that the sender receives an expected
number of, say, five acknowledgments if almost all nodes get the
message.) Because of the bimodal distribution, if the sender re-
ceives several acknowledgments, then it can be fairly confident
that the execution is one in which almost all nodes are getting
the message. On the other hand, if it does not receive several

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

7

acknowledgments, it is likely that the execution is one in which
hardly any nodes get the message, and it should resend the mes-
sage immediately. This shows that we can bound the latency of
retry, independent of the network size.

D. Zones

One of the best-known optimizations to flooding is the zone
routing protocol (ZRP) [9]. In ZRP, each node u maintains a
so-called zone, which consists of all the nodes that are at most ρ
hops away from u, for some appropriately chosen zone radius ρ.
A node that is exactly ρ hops away from u is called a peripheral
node of u.

A node proactively tries to maintain complete routing tables
for all nodes in its zone. Initially, a node discovers who its
neighbors are and then broadcasts its neighbors to its zone (by
using flooding up to hop count ρ). Then each time it discovers
a change (i.e., that it has lost or gained a neighbor), it broad-
casts an update. This procedure ensures that a node has a very
accurate picture of its zone.

If a source wants to send to a destination in its zone, it sim-
ply routes the message directly there, since it knows the route.
Otherwise, it sends a route request query to the peripheral nodes
in its zone. If the destination is in a peripheral node’s zone, the
peripheral node replies with the route to the query originator.
Otherwise, it forwards the query to its peripheral nodes, which
in turn forwards it, and so on.

In the context of ZRP, there are two advantages of maintaining
a zone. First, if a node is in the zone, flooding is unnecessary;
a message can be sent directly to the intended recipient, saving
much control traffic. This brings about a significant improve-
ment in overall performance if a substantial fraction of nodes
are in the zone (which is likely to be true in a small network, but
far less likely in a large one). Second, if we want to send a mes-
sage outside the zone, we can multicast to the boundary of the
zone (or a subset of the nodes on the boundary), which can be a
significant saving over flooding. However, there is a tradeoff in
choosing the size of the zone: a bigger zone benefits more from
these two advantages, but also results in overhead for proactive
maintenance of the zones. In general, the optimal zone size will
depend on factors like mobility and frequency of route requests.

The idea of zones can be used in gossiping as well. Here
there is a third advantage: if a node in the zone receives a gos-
sip message, then it can send it directly to any node in the zone.
This means that it would suffice for a gossiping protocol to get
the message to a node in the intended recipient’s zone. How
much of an advantage is this? In large networks, the advan-
tage is quite minimal. As we have observed, gossiping is essen-
tially bimodal: for typical gossip probabilities, either hardly any
nodes get the message or most of them do. Zones have a rela-
tively small effect in either case. Thus, zones help only in the
relatively few executions that exhibit “intermediate” behavior.

Let GOSSIP4(p, k, k′) be just like GOSSIP1(p, k), except that
each node has a zone of radius k′. Comparing Figure 7(b) to
Figure 7(a), we see using a zone radius of 4 with gossiping
probability .65 in the random network with average degree 8
improves performance by only a few percent over most of the
distances. However, it does ameliorate the back-propagation ef-
fect. As shown in Figure 7(c), increasing the zone radius to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.65,4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP4(0.65,4,4)

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP4(0.65,4,8)

(c)

Fig. 7. Gossiping with zones on a random network of average degree 8.

8 does not significantly improve the limiting performance, but
it has an even more beneficial effect on the back-propagation
problem.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP1(0.65,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15

Fr
ac

tio
n

of
 n

od
es

Hop distance to source

GOSSIP4(0.65,1,3)

(a) (b)

Fig. 8. Gossiping with zones on a 100 node random network.

The situation is much different for smaller networks. Here
zones can have a significant impact. For example, if we use gos-
sip probability .65 in a random network with 100 nodes and av-
erage degree 13, the network is too small for the bimodal effect
to show up. However, the back-propagation problem is signifi-
cant. As Figure 8 shows, for the small random network of 100
nodes, if we use GOSSIP1(0.65,1), then only 76% of nodes at
distance 10 get the message. However, if we have a zone of ra-
dius 3 (GOSSIP4(0.65,1,3)), then 96% of nodes at distance 10
get the message.

V. INCORPORATING GOSSIPING IN AODV

How much does gossiping really help in practice? That de-
pends, of course, on issues like the network topology, mobility,
and how frequently messages are generated. We believe that in

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

8

larger networks with high mobility many of the optimizations
discussed in the literature will be much less effective. (We dis-
cuss this point in more detail below in the context of AODV.)
In this case, flooding will occur more frequently, so gossiping
will be particularly advantageous. However, as our results show,
gossiping can provide significant advantages even in small net-
works.

To test the impact of gossiping, we considered AODV, one of
the best-studied ad hoc routing protocols in the literature. We
compared pure AODV to a variant of AODV that uses gossiping
instead of flooding whenever AODV would use flooding. We
do not have the resources to simulate the protocols in large net-
works. However, our results do verify the intuition that, with
high mobility (when flooding will be needed more often in pure
AODV), gossiping can provide a significant advantage.

A. A brief overview of AODV

Using AODV, the first time a node u requests a route to node
v, it uses an expanding-ring search to find the route. That is, it
first tries to find the route in a zone of small radius, by flood-
ing. It then tries to find the route in zones of larger and larger
radius. If all these attempts fail, it resorts to flooding the mes-
sage through the whole network. The exact choice of zone radii
to try is a parameter of AODV. Typically, not too many radii are
considered before resorting to flooding throughout the network.

AODV also maintains a routing table where it stores the route
after it has been found. If AODV running at node u gets any
packet with source u and destination v, the route in the routing
table will be tried first. If any node w on the route from u to v
detects that the link to the next hop is down, then w generates
a route error (RERR) message, which is propagated back to u.
When u receives the RERR message, it deletes the route to v
from its routing table.

B. GOSSIP3 in AODV

We added gossiping to AODV in a particularly simple way.
If the expanding-ring search with a smaller radius fails, rather
than flooding to the whole network, we use GOSSIP3(.65,1,1).
(We used these parameters since they gave good performance
in the particular scenarios we considered.) The timeout period
of GOSSIP3 should be big enough to allow neighboring nodes
to gossip. The NODE TRAV ERSAL TIME parameter of
AODV is a conservative estimate of the average one hop traver-
sal time for packets that includes queueing delays, interrupt pro-
cessing times and transfer times. In our experiments, we set
the timeout interval to be i ∗NODE TRAV ERSAL TIME
where i is a small integer (i = 5 in our reported results). Note
that we do not use GOSSIP3 in the expanding-ring search with a
smaller radius. Because of the back-propagation effects, flood-
ing is actually more efficient than gossiping for a zone with a
small radius. We call the variant of AODV that uses GOSSIP3
AODV+G.

C. Simulation model and performance results

Our simulation is done in the ns-2 [19] simulator. This is also
the simulator the literature uses to evaluate AODV. We use the
AODV implementation in ns-2 downloaded from the web site of

one of its authors, using IEEE 802.11 as the MAC layer proto-
col. The radio model simulates Lucent’s WaveLAN [21] with a
nominal bit rate of 2Mb/sec and a nominal range of 250 meters.
The radio propagation model is the two-ray ground model [20].

Our application traffic is CBR (constant bit rate). The source-
destination pairs (connections) are chosen randomly. The appli-
cation packets are all 512 bytes. We assumed a sending rate of
2 packets/second and 30 connections.

For mobility, we use the random waypoint model [3] in a
rectangular field. The simulation scenarios are as follows: 150
nodes are randomly placed in a grid of 3300m × 600m. We
chose this layout because in some sense it provides a worst-case
estimate of the performance of gossiping. For this layout the
gossip threshold is about .65. With other more “square” lay-
outs, such as 1650 × 1200, it is possible to gossip with lower
probability (closer to .5), so the saving due to gossiping will
be even more significant. There are 30 connections, each gen-
erating 2 packet/sec; simulation time is 525 seconds; each node
moves with a randomly chosen speed (uniformly chosen from 0-
20 m/sec), then pauses for τ seconds after reaching a randomly
set destination. We vary the pause time to simulate different
mobility scenarios. Each data point represents an average of
five runs using the identical traffic model, but with different ran-
domly generated mobility scenarios. To preserve fairness, iden-
tical mobility and traffic scenarios are used for both AODV and
AODV+G.

We used the same configuration parameters for AODV as
those used in [5]. Of particular interest to us are the expanding-
ring search parameters. In the ns-2 implementation of AODV,
first a zone radius of 5 hops is tried; if no route is found,
network-wide flooding is used.

We study the performance of the following four metrics, of
which the first three were also studied in [5]:
• The packet delivery fraction represents the ratio of the num-
ber of data packets successfully delivered to the number of data
packets generated by the CBR sources.
• The average end-to-end delay of data packets includes all
possible delays caused by buffering during routing discovery,
queuing at the interface queue, retransmission at the MAC layer,
propagation, and transfer time.
• The normalized routing load represents the number of routing
packets transmitted per data packet delivered at the destination.
Each hop-wise packet transmission is counted as one transmis-
sion.
• The route length ratio compares the shortest route length
found to the actual shortest route length.

From Figure 9(a) and 9(b), we see that AODV+G delivers
better network performance than AODV in terms of end-to-end
delay and packet delivery fraction. The performance improve-
ments correlate with the amount of routing load reduced. This
is not surprising, since routing load increases with mobility and
constitutes a significant part of the network load (as can be seen
from Figure 9(c)). At pause time 0, AODV+G reduces average
end-to-end delay by 36% and increases throughput by 8%. From
Figure 9(c) and 9(d), we see that AODV+G reduces the routing
load; the reduction is from 14% to 27% in terms of normalized
routing load.

Finally, we consider route lengths. Note that neither gossip-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

9

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

A
ve

ra
ge

 d
el

ay
 (

se
c)

Pause time (sec)

AODV+G
AODV

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

Pa
ck

et
 d

el
iv

er
y

fr
ac

tio
n

(%
)

Pause time (sec)

AODV+G
AODV

(a) (b)

0

2

4

6

8

10

12

14

16

18

20

22

0 100 200 300 400 500

N
or

m
al

iz
ed

 r
ou

tin
g

lo
ad

Pause time (sec)

AODV+G
AODV

0

10

20

30

40

50

0 100 200 300 400 500

R
ou

tin
g

lo
ad

 r
ed

uc
tio

n
(%

)

Pause time (sec)

AODV+G over AODV

(c) (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

R
ou

te
 le

ng
th

 r
at

io

Pause time (sec)

AODV+G
AODV

(e)

Fig. 9. AODV+G vs. AODV.

ing nor flooding (as used by AODV) will necessarily find the
shortest route. For example, suppose that (u0, u1, u2, u3) is
the shortest path from u0 to u3, but that there is another path
(u0, v1, v2, u2, u3). It is possible that after u0 broadcasts a route
request, u2 will receive it along the path from v2 before receiv-
ing it from u1. Since, in AODV, u2 would save in its routing ta-
ble information from only the first route request to arrive, AODV
will not necessarily discover the shortest route. For similar rea-
sons, with gossiping, we may not always discover the shortest
routes. Our experimental results show that in the 150-node net-
work studied here, the length of paths found by flooding and by
our gossiping algorithm are essentially indistinguishable. We
considered the ratio of the shortest route found by AODV to the
actual shortest route, and similarly for AODV+G. Figure 9(e)
shows that the routing length ratio for AODV+G and AODV
is almost the same (and, indeed, is sometimes marginally bet-
ter for AODV+G). However, this result seems to some extent
to be an artifact of the particular small network and the gos-
sip probability used here. Experimental results performed on
the networks studied in Section III show that gossiping finds
routes 10-15% longer than flooding if gossiping is done with a
probability just a little above threshold. The gap decreases as

the gossiping probability increases; for sufficiently large gossip
probability, the route lengths are again essentially indistinguish-
able.

These simulations were carried out in a network with 150
nodes. In such a small network, even if route-destination pairs
are chosen at random, a great many pairs will be within 5 hops
of each other, and will thus be discovered by the expanding-
ring search. Indeed, in our simulation, roughly 30%-40% of the
routes discovered had a length of less than or equal to 5. Thus,
as many as 40% of the routes are discovered by the expanding-
ring search. We expect that things will be quite different in a
larger network. Of course, this depends in part on the nature of
route requests and the choice of parameters for the expanding-
ring search. While it is possible that many requests will be local,
there are applications for which this seems unlikely. Certainly
if route-destination pairs are chosen at random, then expanding-
ring search is unlikely to be effective for almost any choice of
parameter settings. That is, a great many source-destination
pairs are likely to be far apart, so no expanding-ring search
is likely to find them efficiently. Additionally, expanding-ring
search may add a great deal of routing traffic and route discov-
ery latency. By way of contrast, gossiping continues to perform
well in large networks. Thus, we predict that the relative advan-
tage of AODV+G over pure AODV will increase as the network
gets larger. The graphs presented here underestimate the perfor-
mance improvement.

VI. CONCLUDING REMARKS

Despite the various optimizations, with flooding-based rout-
ing, many routing messages are propagated unnecessarily. We
show that gossiping can reduce control traffic up to 35% when
compared to flooding. Since the routes found by gossiping may
be up to 10-15% longer than those found by flooding (depend-
ing on the gossip probability), how much gossiping can save in
terms of overall traffic depends on the gossip probability used,
node mobility, and the type of messages sent. With high mo-
bility, new routes will have to be found more frequently, and
the savings will be relatively greater. In addition, if messages
are mainly network-wide broadcasts, rather than point-to-point,
gossiping may result in significant savings over flooding. (Note
that with gossiping, in general, a small fraction of the nodes will
not get the broadcast. However, in certain application it may
suffice that almost everyone gets the message, or the contents of
broadcast k can be piggybacked with broadcast k+1, so that the
probability of missing a message altogether becomes very low.)

Our protocol is simple and easy to incorporate into existing
protocols. When we add gossiping to AODV, simulations show
significant performance improvements in all the performance
metrics, even in networks as small as 150 nodes. As discussed
in the Section V, we expect this performance improvement to
become even more significant in larger networks.

We have also experimented with adding gossiping to ZRP,
by using gossiping to send the route request to some periph-
eral nodes rather than to all peripheral nodes. Again, our re-
sults show significant improvement in all performance metrics.
It seems likely that gossiping can be usefully added to a number
of other ad hoc routing protocols as well.

Gossiping has a number of advantages over other approaches

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

10

considered in the literature. For one thing, unlike many heuris-
tics considered in the literature, we believe that we have a very
good understanding of how gossiping will perform in large net-
works. This understanding is supported both by analytical re-
sults and our experiments. While there are fundamental limits to
the amount of nonlocal traffic that can be sent in large networks,
due to problems of scaling [8], [14], gossiping should still be
useful in large networks when nonlocal messages need to be
sent. It is far less clear how well other optimizations considered
in the literature will perform in large networks. Moreover, as our
simulations with AODV have shown, gossiping can provide sig-
nificant advantages even in small networks. Experience in other
contexts has shown that gossiping is also quite robust and able
to tolerate faults; we expect that this will be the case in ad hoc
routing as well. All this suggests that gossiping can be a very
useful adjunct to the arsenal of techniques in mobile computing.
Of course, work needs to be done in finding good techniques to
learn the appropriate gossip parameters. We have experimented
with adjusting the gossiping probability of each node according
to the success/failure of route requests; it is increased if the route
request failure probability is high, and decreased if the route
request failure probability is close to 0. To propagate the ap-
propriate probability throughout the network, it can be put into
the route request packet. Each intermediate node receiving the
packet will gossip with the probability carried in the route re-
quest packet. Our preliminary experiments have shown that this
approach does produce good results, although we have not had
enough experience to determine the best way of making these
adjustments to the gossip probability; we leave this for future
work.

Acknowledgments

We would like to thank Jon Kleinberg for suggesting the rele-
vance of percolation theory, Harry Kesten for explaining the rel-
evant results of percolation theory, and Alan Demers for many
useful comments.

REFERENCES

[1] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A distance
routing effect algorithm for mobility (DREAM). In Proc. Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Network-
ing (MobiCom), pages 76–84, 1998.

[2] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky.
Bimodal multicast. ACM Transactions on Computer Systems, 17(2):41–
88, May 1999.

[3] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and J. Jetcheva. A per-
formance comparison of multi-hop wireless ad hoc network routing proto-
cols. In Proc. Fourth Annual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom), pages 85–97, October 1998.

[4] R. Chandra, V. Ramasubramanian, and K. Birman. Anonymous gossip:
Improving multicast reliability in mobile ad-hoc networks. In Proc. 21st
International Conference on Distributed Computing Systems (ICDCS),
pages 275–283, 2001.

[5] S.R. Das, C. E. Perkins, and E. M. Royer. Performance comparison of two
on-demand routing protocols for ad hoc networks. In Proc. IEEE Con-
ference on Computer Communications (INFOCOM), pages 3–12, March
2000.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated
database maintenance. In Proc. ACM Symposium on Principles of Dis-
tributed Computing, pages 1–12, 1987.

[7] G. Grimmett. Percolation. Springer-Verlag, New York,NY, 1989.
[8] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans-

actions on Information Theory, IT-46(2):388–404, 2000.

[9] Z. Haas and M. Pearlman. The performance of query control schemes
for the zone routing protocol. In Proc. ACM SIGCOMM, pages 167–177,
August 1998.

[10] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In Proc. Fifth An-
nual ACM/IEEE International Conference on Mobile Computing and Net-
working (MobiCom), pages 174–185, 1999.

[11] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc Wire-
less Networks. Kluwer Academic Publishers, 1996.

[12] B. Karp and H. T. Kung. Greedy perimeter stateless routing (GPSR) for
wireless networks. In Proc. Sixth Annual ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MobiCom), pages 243–254,
2000.

[13] Y. B. Ko and N. H. Vaidya. Location-aided routing (LAR) in mobile ad hoc
networks. In Proc. Fourth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 66–75, 1998.

[14] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. Capacity of ad
hoc wireless networks. In Proc. seventh Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom), pages 61–
69, 2001.

[15] R. Meester and R. Roy. Continuum percolation. Cambridge University,
1996.

[16] S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu. The broadcast storm
problem in a mobile ad hoc network. In Proc. fifth Annual ACM/IEEE
International Conference on Mobile Computing and Networking (Mobi-
Com), pages 151–162, 1999.

[17] V. Park and M.S. Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks. In Proc. INFOCOM, pages 1405–1413,
April 1997.

[18] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing.
In Proc. 2nd IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 90–100, February 1999.

[19] VINT Project. The UCB/LBNL/VINT network simulator-ns (Version 2).
http://www.isi.edu/nsnam/ns.

[20] T. S. Rappaport. Wireless Communications: Principles and Practice.
Prentice Hall, 1996.

[21] Bruce Tuch. Development of WaveLAN, an ISM band wireless LAN.
AT&T Technical Journal, 72(4):27–33, 1993.

[22] A. Vahdat and D. Becker. Epidemic routing for partially-connected ad hoc
networks. Duke Technical Report CS-2000-06, July 2000.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

