
Window  Flow Control

Poses an upper bound (the “window”) on the
maximum number of data units of a session that can
be sent by A and are not yet know by A to have been
received by B.

 

B notifies A that it has disposed of a data unit by
sending a permit to A; upon receiving a permit, A
can send new data unit.

( Data units may be packets, bytes, messages, etc..)
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End-to-End Windows

The window exists between source machine &
destination machine (or between source &
destination node of subnet)

Variations:
a) A request number RN is sent acknowledging all
packets before RN and sliding window to
[RN,RN+W-1]. 
b) When the first packet of the window is received, a
permit is sent allocating entire new window

Only one permit per window is sent (saves #
permits) 
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X= expected packet
      transmission time 
W= window size
d= end-to -end delay 
     (roundtrip)

We would like to inhibit traffic only under congestion;
thus we should have
                 WX>d(no congestion)

With increasing congestion, d increases, and the window
inhibits flow:

            

In low speed networks W should be chosen larger than h
(usually between h and 3h), where h is the number of hope
between source and destination.
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r = min ( 1
X , W

d )

: session rate (packets/sec), (assuming packets always    r
       available at transmitter)

The smaller W is, the more r is throttled when
congestion arises, and the faster the reaction to
congestion is. 
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Effect of the number of sessions

Suppose there are n actively controlled sessions
with windows .W1,W2, � � �,Wn

Let  � i = #DU�s
(#DU �s)+(#permits) � (0,1)

By Little’s Theorem:  � i = (A�B delay)
(A�B delay)+(B�A delay)

Total number of packets in the network =
n

i=1
� � iWi

Let = total throughput of all sessions (= total packet�

acceptance rate)

Little: T =

n

i=1
�� iWi

�

Need to adjust window sizes
with number of sessions

 5       

��

��

��

������
������

��	�
��������


�������

�� ����� 	 �� 
��
���� ��

������� ��

�

�

�



Problem with End-to -End Windows

(a) Window size must change with the number of        
      sessions.
(b) Both throughput and delay have no guarantees
(c) For high-speed sessions on high-speed                  
     networks, windows must be large.

e.g.
        r = 1Gb/s, L = 3000km,
        c = speed of light in fiber, 450bits/packe

�W �

dno congestion

X = 2L
c �

r
450 � 100,000 packets

(d) Sessions on long paths with large windows are     
      better treated than short path sessions unfair     �

      to other sessions.
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Node-by-Node windows
            (for virtual circuits, e.g. TYMNET Network)

There is a separate window for each link on a VC
path.
Each node can store up to W packets of a session.

� For a packet of a session to proceed from i to i+1,

a buffer space must empty node i+1 (when this

happens a permit is sent to i )

� This creates a window of size W at each link

� If a link becomes congested, packets remain in

queue, and permits do not go back to previous

node (“back-pressure”).
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Advantages  

� Smaller buffer requirements
� Reduces fairness problem

Disadvantages

� Fairness problem may still exist when satellite link (or
other large propagation links) exist.

� Buffer requirements increase with the number n of
sessions

� Still no guaranteed rate and delay.

 8       

� � �

��� � ���

�
���� ��
��������
�����
���
����

r � min( 1
X , W

dlink
)
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Rate-Based Flow Control

� Integrated service networks try to provide

guaranteed rate to some users, and thus cannot

use window flow control.

� In addition, high speed sessions on high speed

links require very large windows when using

window flow control. 

With rate-based flow control, each session has some

requested rate and some minimum rate (which has

to be guaranteed)

If session rates have to be reduced, the rate

reduction must be done “fairly”, while obeying the

minimum rate requirements of each session.
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Leaky-Bucket Rate Control
(e.g. PARIS Network)

Initially the permit bucket is full, allowing a burst of W
packets to get through the control. After this, only one
packet per 1/r seconds  on the average is allowed into the
network. 

 

The parameter W specifies how bursty the source can be,
and r specifies the maximum long term rate.
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“For all practical purposes”, If and 
n

i=1
� ri < C

 (k: constant say 3) , few packets are lost.B � k
n

i=1
� W i

One can construct pathological examples in which
queues are substantially larger than this.
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Queueing Analysis of Leaky Bucket

View the system as a discrete time system with a
state change each 1/r seconds.

Let states i=0,1,2,...,W correspond to W-i permits in
the packet and no packets waiting. Let states
i=W+1,... correspond to an empty bucket and i-W
packets waiting.

   (for Poisson packet arrivals)ak = 1
k! � �k

� e−�

Note that this is the same as M/D/1 with slotted
service.
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Alternative model for Leaky-Bucket Scheme

A more realistic model is that of Poisson distributed
message arrivals, and a geometrically distributed
number if small packets per message

Let , where L is the mean number of packets per� = 1
L

message.
Thus is the service rate at which messages are served�

when the bucket is empty.

Let Y(t)=(# packets) +(# empty bucket positions)
Y(t) then decreases at rate 1, except when an arrival
occurs, and then Y(t) increases by the number of packets
arriving (i.e. the time required to serve the arrival)

Y(t) is then the unfinished work in fictitious M/m/1
queue! 
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