1979 ARPANET Algorithm

$d_{i j}=$ average delay of packets crossing (i,j) in the last 10 secs. The $d_{i j}$'s are broadcast every 60 secs to all other nodes, using a flooding mechanism.
Nodes update their shortest paths (asynchronously), using Dijkstra's algorithm.
Each node keeps track of the first link on the shortest path.

Link lengths are broadcast to all other nodes through flooding algorithm:

- origin sends information to neighbors
- The neighbors send it to their neighbors (except for node from which they received it)
- Each packet has a SN and a node ID. Using this information, nodes avoid forwarding a packet twice.

Note: other alternatives include broadcasting over a spanning tree

Dijkstra's Algorithm

Given: $G=(N, A), d_{i j} \geq 0$, destination node 1.
Idea: find the shortest paths in order of increasing path length.

1. Find next closest node. Find $i \notin P_{k-1}$ such that

$$
D_{i}=\min _{j \notin P_{k-1}} D
$$

set $\quad P_{k}=P_{k-1} \cup\{i\}$. If all nodes covered, stop.
2. Update labels. For all $j \notin P_{k}$

$$
D_{j}=\min _{i \in P_{k}}\left\{d_{j i}+D_{i}\right\}
$$

Go to 1.

Example: (Dijkstra's Algorithm)

TYMNET Network (1971 and 1981)

Uses same adaptive shortest path idea, but routing is centralized (virtual circuits)

The supervisory node computes the shortest path and sends a "needle" packet to source that contains the routing information.

TYMNET I: the supervisory node explicitly sets the routing tables at the nodes.

TYMNET II: routing tables are set by a set-up packets that precedes the transmission of data.

Similar idea used in Codex network

Bellman-Ford algorithm

Let $D_{i}^{h}=$ length of shortest path from i to 1 that uses $\leq h$ arcs

$$
\begin{aligned}
& D_{1}^{0}=0 \\
& D_{i}^{0}=\infty, i \neq 1 \\
& D_{i}^{h+1}=\min _{j \in N(i)}\left[d_{i j}+D_{j}^{h}\right] \text { * }
\end{aligned}
$$

After at most $N-1$ iterations * shortest path is
founded (provided that there are no negative length
cycles); shortest path distance $D_{i}=D_{i}^{N-1}$. In fact
iteration terminates when after h iteration $D_{i}^{h}=D_{i}^{N-1}$
for all i

Example: Bellman-Ford (infinite initial conditions)

Example: Bellman-Ford zero initial conditions

Bellman-Ford algorithm (revisited)

Initial conditions: $D_{1}^{(0)}=0, \quad D_{i}^{(0)}=\infty, i \neq 1$

$$
D_{i}^{(k+1)}=\min _{j \in N(i)}\left[d_{i j}+D_{j}^{(k)}\right] \quad i \neq 0, D_{1}^{(k+1)}=0
$$

$D_{i}^{(k)}=$ length of shortest path from ito 1 using up to klinks

Algorithm terminates after at most N - 1 steps. Can be implemented in a distributed way.

Problem 1: it is often preferably to send distances asynchronously rather than waiting for D_{j}^{k} from all neighbors, before new iteration.

Solution: update asynchronously at each node $i \neq 1$

$$
D_{i}=\min _{j \in N(i)}\left[d_{i j}+D_{j}\right]
$$

where D_{j} is the latest estimate from j
Reason it works: after each update, D_{i} is the distance from i to 1 on some path (provided initial conditions are $D_{i}=\infty$ for $i \neq 1, D_{1}=0$)

Problem 2: In practice, link lengths $d_{i j}$ occasionally change

Solution: just keep iterating asynchronous algorithm with new lengths $D_{i}=\min _{j \in N(1)}\left[d_{i j}+D_{j}\right]$

Before link (4,1) breaks, $\left.D_{4}=1, D_{2}=2, D_{3}=\right\}$ After node 4 notices that $d_{41}=\propto$, iterations start until convergence achieved.

Note: bad news can travel slowly

Lemma: The asynchronous algorithm

$$
D_{i}=\min _{j \in N(i)}\left[d_{i j}+D_{j}\right] d_{i j} \text { 's fixed }
$$

converges to the true shortest distances if the initial conditions are:
(a) $D_{i}=\infty$ for $i \neq 1, D_{1}=0$ ("infinite initial conditions") or (b) $D_{i}=0$ for all i ("zero initial conditions")

Theorem: consider the asynchronous B-F algorithm Let D_{i} be the value at any time with some arbitrary initial conditions.
Let $\overline{D_{i}}$ be the value that we would have if initial conditions where "infinite"
Let D_{i} be the value that we would have if initial conditions where "zero". Then

$$
\underline{D_{i}^{(k)}} \leq \underline{D}_{i}^{(k+1)} \leq D_{i} \leq \bar{D}_{i}^{(k+1)} \leq \bar{D}_{i}^{(k)}
$$

Since $\underline{D}_{i}^{(k)} \uparrow$ and $\bar{D}_{i}^{(k)} \downarrow$ converge to correct distances, D_{i} also converges to correct distances.

Floyd-Warshall Algorithm

Calculates the shortest distances $D_{i j}$ for all source-destination pairs (i,j)
$D_{i, j}^{(k)}=$ shortest distance from i to j using only nodes in $\{1,2,3, \ldots, K\}$ as intermediate nodes

$$
\begin{aligned}
& D_{i, j}^{(o)}=d_{i j} \quad(i, j), i \neq j \\
& D_{i, j}^{(k+1)}=\min \left\{D_{i, j}^{(k)}, D_{i, k+1}^{(k)}+D_{k+1, j}^{(k)}\right\}, \quad \forall i, j
\end{aligned}
$$

$D_{i, j}^{(N)}$ are the final distances (N \# of nodes)

Example (Floyd-Warshall)

0 intermediate nodes

$i j$	1	2	3	4
1	0	1	∞	8
2	∞	0	1	6
3	∞	∞	0	2
4	3	∞	6	0

$D_{i, j}^{(k+1)}=\min \left\{D_{i, j}^{(k)}, D_{i, k+1}^{(k)}+D_{k+1, j}^{(k)}\right\}$
intermediate nodes=\{1\}

$i j$	1	2	3	4
1	0	1	∞	8
2	∞	0	1	6
3	∞	∞	0	2
4	3	4	6	0
$D_{i, j}^{(1)}$				

intermediate nodes=\{1,2\}

j	1	2	3	4
1	0	1	$\underline{2}$	$\underline{7}$
2	∞	0	1	6
3	∞	∞	0	2
4	3	4	$\underline{5}$	0

$D_{i, j}^{(2)}$
$D_{i, j}^{(k+1)}=\min \left\{D_{i, j}^{(k)}, D_{i, k+1}^{(k)}+D_{k+1, j}^{(k)}\right\}$
intermediate nodes=\{1,2,3\}

$i j$	1	2	3	4
1	0	1	2	$\underline{4}$
2	∞	0	1	$\underline{3}$
3	∞	∞	0	2
4	3	4	5	0

intermediate nodes=\{1,2,3,4\}

i	1	2	3	4
1	0	1	2	4
2	$\underline{7}$	0	1	3
3	$\underline{5}$	$\underline{6}$	0	2
4	3	4	5	0

$D_{i, j}^{(4)}$
(final shortest distances)

Optimal Routing

A rational approach is to try to minimize the expected number of packets in the entire network, By Little's low, this also minimizes the average packet delay.

Changing the routing of a session changes:

- The congestion in each link, thus changing are lengths in shortest path calculations
- The delay seen by other sessions.

This suggests that:

- Routing should be as a global problem
- Algorithm should make small changes rather than large changes.

If we use Kleirock independence approximation, the expected number of packets queued or being served at arc (i,j)

$$
D_{i j}\left(F_{i j}\right)=\frac{F_{i j}}{C_{i j}-F_{i j}}+d_{i j} F_{i j}
$$

where $F_{i j}=$ expected data rate on (i, j)

$$
\begin{aligned}
& C_{i j}=\text { capacity of }(i, j) \\
& d_{i j}=\text { propagation and processing delay }
\end{aligned}
$$

Our problem then is to choose to minimize $\sum_{i, j} D_{i j}\left(F_{i j}\right)$ subject to constraints on $F_{i j}$

Notation

$W=$ the set of all sessions
$P_{w}=$ the set of all paths for session $w \in W$
$r_{w}=$ the data rate for session $w \in W$
$X_{p}=$ the data rate of session w sent over path $p \in P_{w}$
Constraints: $X_{p} \geq$ Ofor all $p \in P_{w}$

$$
\sum_{p \in P_{w}} X_{p}=r_{n} \text { for all } w \in W
$$

