1979 ARPANET Algorithm

dj =average delay of packets crossing (i,j) in the last
10 secs. The d; 's are broadcast every 60 secs to all

other nodes, using a flooding mechanism.

Nodes update their shortest paths (asynchronously),
using Dijkstra’s algorithm.

Each node keeps track of the first link on the shortest
path.
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Link lengths are broadcast to all other nodes through
flooding algorithm:

. origin sends information to neighbors

- The neighbors send it to their neighbors (except for node
from which they received it)

- Each packet has a SN and a node ID. Using this
information, nodes avoid forwarding a packet twice.

Note: other alternatives include broadcasting over a
spanning tree




Dijkstra’s Algorithm

Given: G=(N,A), dj > 0,destination node 1.
Idea: find the shortest paths in order of increasing
path length.
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set P, of k closest node complement of P,
to 1

shorest path from (k+1)th ckosest
node must pass through nodes in P

k
P1={1},D1=0,D;=d, forj+:

1. Find next closest node. Find 1 ¢ Px_;such that
Di=min D,

J€Pya
set Pyx=Py1U{i}. If all nodes covered, stop.

2. Update labels. For all j ¢ Py
D; :E]F!D {dji + D;}

Go to 1.




Example: (Dijkstra’s Algorithm)
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TYMNET Network (1971 and 1981)

Uses same adaptive shortest path idea, but routing is
centralized (virtual circuits)

supervisry node Routing table

) ) incoming |outgoing
needle link+VCl |link+VCI

request

9, Odestlnatlon

source

The supervisory node computes the shortest path
and sends a “needle” packet to source that contains
the routing information.

TYMNET I. the supervisory node explicitly sets the
routing tables at the nodes.

TYMNET II: routing tables are set by a set-up packets
that precedes the transmission of data.

Similar idea used in Codex network




Bellman-Ford algorithm

Let DI"=length of shortest path from ito 1 that
uses < h arcs

DY=c0,i#1

DMt =min [dj+ D[] *
jeN()

After at most N-1 iterations * shortest path is
founded (provided that there are no negative length
cycles); shortest path distance D; = DN".In fact
iteration terminates when after h iteration D" = DN

for all i




Example: Bellman-Ford (infinite initial conditions)
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Example: Bellman-Ford zero initial conditions
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Bellman-Ford algorithm (revisited)

Initial conditions: D =0, D¥ =0 ,i+1
D =min [d; +Dj(k)] i+0, DIV =0
DX =length of shortest path from i to 1 using
up to klinks

Algorithm terminates after at most N-1 steps.
Can be implemented in a distributed way.

Problem 1: it is often preferably to send distances
asynchronously rather than waiting for Djk from all

neighbors, before new iteration.

Solution: update asynchronously at each node i+ 1

Di :Jrenl\l{ll) [d|J+DJ ]
where D; Is the latest estimate from |

Reason it works: after each update, D; is the distance
fromito 1on some path (provided initial conditions
areD; =wofori+1, D; =0)
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Problem 2: In practice, link lengths dj occasionally
change

Solution: just keep iterating asynchronous algorithm
with new lengths D; :jnl]\i('?) [dij+D; ]

/1/00

1) destination

>
5 100

Before link (4,1) breaks, D4=1,D,=2,D3=":
After node 4 notices that d4; = o, iterations start until
convergence achieved.

Note: bad news can travel slowly
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Lemma: The asynchronous algorithm

Di :E\m) [d|J+DJ ] d” 's fixed

converges to the true shortest distances if the initial
conditions are:

(@) Di=x fori+1, D; =0 (“infinite initial conditions™)
or (b) D; =0for all i (“zero initial conditions™)

Theorem: consider the asynchronous B-F algorithm
Let D; be the value at any time with some arbitrary
Initial conditions.

Let D; be the value that we would have if initial
conditions where “infinite”
Let D; be the value that we would have if initial

conditions where “zero”. Then

_ (k+1) _(k)
D¥<D; ¥ <D; <D; <D

_®
SinceD® t and D; | converge to correct distances,

D; also converges to correct distances.
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Floyd-Warshall Algorithm

Calculates the shortest distances Dj; for all
source-destination pairs (i,))

Di(}j(): shortest distance from i to jusing only nodes in

{1,2,3,...,K} as intermediate nodes
DIy =dj  V(i,),i#)

(k+1) : K) K (k) .
Di; 7 =min{D;;’, Dj\;1 +Dyy1, 1 VI,

D{Mare the final distances (N # of nodes)
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Example (Floyd-Warshall)

arc length
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D™ =min{D{?, D{{;1 + Di1.}
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k+1 . Kk Kk (k)
D™ =min{D{?,D{,y + Dicy ;}

Lj = ik+
intermediate nodes={1,2,3}
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Optimal Routing

A rational approach is to try to minimize the expected
number of packets in the entire network, By Little’s

low, this also minimizes the average packet delay.

Changing the routing of a session changes:
. The congestion in each link, thus changing are
lengths in shortest path calculations

. The delay seen by other sessions.

This suggests that:
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- Routing should be as a global problem
. Algorithm should make small changes rather than

large changes.
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If we use Kleirock independence approximation, the
expected number of packets queued or being served
at arc (i,))
Djj(Fij) =%+dij|:ij
where Fjj= expected data rate on (i,))
Cjji= capacity of (i,))

d;= propagation and processing delay

Dy(Fy)

Our problem then is to choose to minimize % Dijj(Fy)

subject to constraints on F;j;
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Notation
W= the set of all sessions

Pw=the set of all paths for sessionweW
rw=the data rate for session we W
Xp=the data rate of session w sent over path p € Py

Constraints: Xp > 0for all pe Py

sz:) Xp:rwfor a.”WEW
Erw
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