
1979 ARPANET Algorithm

 average delay of packets crossing (i,j) in the lastdij =
10 secs. The are broadcast every 60 secs to alldij ’s
other nodes, using a flooding mechanism.
Nodes update their shortest paths (asynchronously),
using Dijkstra’s algorithm.
Each node keeps track of the first link on the shortest
path.

 1

����� �� 	

����� ���� 	
��

�
�

�����
�����
�����

����� ��

����� ���� 	
��

�
�

�����
�����
�����

����� �� �

����� ���� 	
��

�
�
�

�
���
�
���
�
���

����� �� �

����� ���� 	
��

�
�

���
�
�����
�����

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

� 	�����

�

�

�

�

Link lengths are broadcast to all other nodes through
flooding algorithm:

� origin sends information to neighbors
� The neighbors send it to their neighbors (except for node

from which they received it)
� Each packet has a SN and a node ID. Using this

information, nodes avoid forwarding a packet twice.

Note: other alternatives include broadcasting over a
 spanning tree

 2

�

�

 Dijkstra’s Algorithm

Given: G=(N,A), destination node 1.dij � 0,
Idea: find the shortest paths in order of increasing
path length.

 P1 = {1},D1 = 0,Dj = dj for j � 1
1. Find next closest node. Find such that i � Pk−1

 Di =
j�Pk−1
min Dj

 set If all nodes covered, stop.Pk = Pk−1 � {i }.

2. Update labels. For all j � Pk

 Dj =
i�P k
min {dji + Di}

 Go to 1.

 3

����� �

��� � �� � 	
����� ����

��

	���
����� �� �

������� �	��
��� �
����� �
�����
���� ���� �	�� ������� ����� �� �

�

Example: (Dijkstra’s Algorithm)

 4

�����������

�

�

�

�

�
�

�

�

�

��

�
��	
 ��	
��

�����������

�

�

�

�

�
�

�

�

�

��

��	
 ��	
��

�

�

���� ����

�

� �

�

��

�

� �

�

��

 5

�����������

�

�

�

�

�
�

�

�

�

��

�

��	
 ��	
��

�

���� ����

�

�

�����������

�

�

�

�

�
�

�

�

�

��

�
��	
 ��	
��

�

��	� ����

�

�

� �

�

��

�

� �

�

��

 6

�����������

�

�

�

�

�
�

�

�

�

��

�

��	
 ��	
��

�

���� ���� �

�

�����������

�

�

�

�

�
�

�

�

�

��

�

��	
 ��	
��

�

���� ���� �

��

� �

�

��

�

� �

�

��

TYMNET Network (1971 and 1981)

Uses same adaptive shortest path idea, but routing is
centralized (virtual circuits)

The supervisory node computes the shortest path
and sends a “needle” packet to source that contains
the routing information.

TYMNET �: the supervisory node explicitly sets the
routing tables at the nodes.

TYMNET ��: routing tables are set by a set-up packets
that precedes the transmission of data.

Similar idea used in Codex network

 7

supervisry node

destination
source

request

"needle"

 Routing table
incoming
link+VCI

outgoing
link+VCI

...
..

...
..

Bellman-Ford algorithm

Let length of shortest path from i to 1 that Di
h =

 uses � h arcs

 D1

0 = 0

Di
0 = � , i � 1

 *Di
h+1 =

j�N(i)
min [dij + Dj

h]

After at most N-1 iterations * shortest path is

founded (provided that there are no negative length

cycles); shortest path distance .In fact Di = Di
N−1

iteration terminates when after h iteration Di
h = Di

N−1

for all i

 8

Example: Bellman-Ford (infinite initial conditions)

 9

�

�

�

�

� �

��

�

�����������

	���

��

�

�

�

�

� �

��

�

��	
��

���

�

�

�

�

� �

��

�

��	
��

���

�

�

���� ����
������
 ��	

���
� ���� �

���

�

�

�

�

� �

��

�

��	
��

���

�

�

����

	�
� ����

�

�

�

���

��
� ����

�

�

�

�

� �

��

�

��	
��

���

�

�

�

���

���� ����

Example: Bellman-Ford zero initial conditions

 10

�

�

�

�

� �

��

�

�	
��
����

��

�

�

�

�

�

�

�

� �

��

���

�

�

�

�

�

�

�

� �

��

���

�

�

�

�

�

�

�

� �

��

���

�

�

�

�

�

�

�

� �

��

���

�

�

�

�

�

�

�

� �

��

���

�

�

�

Bellman-Ford algorithm (revisited)

Initial conditions: ,D1
(0) = 0 Di

(0) = � , i � 1

 , Di
(k+1) =

j�N(i)
min [dij + Dj

(k)] i � 0 D1
(k+1) = 0

length of shortest path from i to 1 usingDi
(k) =

 up to linksk

Algorithm terminates after at most N-1 steps.
Can be implemented in a distributed way.

Problem 1: it is often preferably to send distances
asynchronously rather than waiting for from allDj

k

neighbors, before new iteration.

Solution: update asynchronously at each node i � 1

 Di =
j�N(i)
min [dij + Dj]

 where is the latest estimate from jDj

Reason it works: after each update, is the distanceDi
from i to 1 on some path (provided initial conditions
are ,)Di = � for i � 1 D1 = 0

 11

Problem 2: In practice, link lengths occasionallydij

change

Solution: just keep iterating asynchronous algorithm
with new lengths Di =

j�N(i)
min [dij + Dj]

Before link (4,1) breaks, D4 = 1,D2 = 2,D3 = 3
After node 4 notices that , iterations start untild41 = �
convergence achieved.

Note: bad news can travel slowly

 12

�

� �

�
�

�
�

���

�

�

�

��	
��

���

�

Lemma: The asynchronous algorithm

 fixedDi =

j�N(i)
min [dij + Dj] dij ’s

converges to the true shortest distances if the initial
conditions are:
(a) , (“infinite initial conditions”)Di = � for i � 1 D1 = 0
or (b) for all i (“zero initial conditions”)Di = 0

Theorem: consider the asynchronous B-F algorithm
Let be the value at any time with some arbitraryDi
initial conditions.

Let be the value that we would have if initialDi

conditions where “infinite”
Let be the value that we would have if initialDi

conditions where “zero”. Then

 Di
(k)
� Di

(k+1)
�Di �Di

(k+1)
�Di

(k)

Since and converge to correct distances,Di
(k)
� Di

(k)
�

 also converges to correct distances.Di

 13

Floyd-Warshall Algorithm

Calculates the shortest distances for allDij

source-destination pairs (i,j)

= shortest distance from i to j using only nodes inDi,j
(k)

{1,2,3,...,K} as intermediate nodes
 Di,j

(o) = dij

��
(i, j), i � j

 Di,j
(k+1) = min{Di,j

(k), Di,k+1
(k) + Dk+1,j

(k) },
��

i, j

are the final distances (N # of nodes)Di,j
(N)

 14

������� � �

� ����� �����

��� ������

���

��	�

���

Example (Floyd-Warshall)

 15

� �

� �

� ��

�

�

�

��	 ��
���

��� ��

� � � �

�

�

�

�

� � �

� � �

� �

� ��

�

�

� �
����������
����

����

���

Di,j
(k+1) = min{Di,j

(k), Di,k+1
(k) + Dk+1,j

(k) }

 16

� � � �

�

�

�

�

� � �

� � �

� �

� ��

�
�

	
��
���	���
��������

����

���

�

���� ��� ���
���

� � � �

�

�

�

�

� � �

� � �

� �

� ��

�
�

	
��
���	���
����������

����

���

�

�

Di,j
(k+1) = min{Di,j

(k),Di,k+1
(k) + Dk+1,j

(k) }

 17

� � � �

�

�

�

�

� � �

� � �

� �

� ��

�
�

�	
��
����
� 	������������

����

���

�

�

� � � �

�

�

�

�

� � �

� � �

� �

� ��

�
�

�	
��
����
� 	��������������

����

���

�

�

�

� �

���	�� ����
��

���
�	����

 18

Optimal Routing

A rational approach is to try to minimize the expected

number of packets in the entire network, By Little’s

low, this also minimizes the average packet delay.

Changing the routing of a session changes:

� The congestion in each link, thus changing are

lengths in shortest path calculations

� The delay seen by other sessions.

This suggests that:

 19

� Routing should be as a global problem

� Algorithm should make small changes rather than

large changes.

 20

If we use Kleirock independence approximation, the

expected number of packets queued or being served

at arc (i,j)

 Dij(Fij) =
Fij

Cij−Fij
+ dijFij

where = expected data rate on (i,j)Fij

 = capacity of (i,j)Cij

 = propagation and processing delaydij

Our problem then is to choose to minimize
i,j
� Dij(Fij)

subject to constraints on Fij

 21

Notation
 = the set of all sessionsW
 = the set of all paths for session Pw w � W
 = the data rate for session rw w � W
 = the data rate of session w sent over path Xp p � Pw

 Constraints: for all Xp � 0 p � Pw

 for all
p�Pw
� Xp = rw w � W

 22

