
� If are independent PoissonA1(t), A2(t), � � �,Ak(t)

processes of rate , then �1,�2, � � �,�k

 is a Poisson process of rate A1(t) + A2(t) +� � � +Ak(t)

�1 + �2 + � � � +�k

If each arrival of a Poisson process is independently

sent to system 1 with prob. p and system 2 with prob.

1-p, the arrivals to each system are Poisson and

independent.(see also Ex.3.11a)
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Routing in Data Nets

Datagarms: routing decision for every packet.

Virtual Circuits: one routing decision for all the

packets of the same session.

Issues

� selection of paths

� broadcasting of routing-related info.

Performance Measures

Throughput (“quantity” of service)

Average packet delay (“quantity” of service)
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As the routing algorithm succeeds in keeping delay

low, the flow control allows more traffic into the

network.

Good routing algorithms: higher throughput for the

same delay; smaller delay for a given throughput.
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Example:

� If everything routed through middle path the delay is

large.

� Suppose input traffic at node 2 is increased to 15 units. 

   If a single path is used at least  5 units is rejected.

Therefore the delay and the maximum throughput

depend on routing.
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Routing may be:

1. Centralized or Distributed

� Centralized: all routing choices are made at a central

node.

� Distributed: computation of routes is shared among

nodes who exchange information if necessary.

2. Static or Dynamic (adaptive)

� Static: path used for an origin-destination pair is fixed.

� Dynamic: path may changes in response to congestion.

Of course even with static algorithms paths will

change if nodes or links fail.
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Shortest Path problem

Directed graph G=(N,A) arcs have direction �

                            dij = length of (i, j)

The length of a directed path  p={i,j,k,.....,l,m} is
defined as dij + djk + � � � � � +dlm

Given: G=(N,A) , dij’s with no negative length cycles,
and a node 1

Problem: find the shortest path from every node i to
node 1

Applications: a) dij=delay (i,j), then “shortest                  
                            path” corresponds to the                      
                            “minimum delay” path
                        b) If pij = prob. (i,j) is operational.              
                            Let define dij = -lnpij . Then “                   
                            shortest path” corresponds to             
                            “most reliable” path
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Bellman-Ford algorithm 

Let  length of shortest path from i to 1 that             Di
h =

       uses � h arcs

          
           D1

0 = 0

Di
0 = � , i � 1

           *Di
h+1 =

j�N(i)
min [dij + Dj

h]

After at most N-1 iterations * shortest path is 

founded (provided that there are no negative length 

cycles); shortest path distance .In fact Di = Di
N−1

iteration terminates when after h iteration Di
h = Di

N−1

for all i
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Example: Bellman-Ford (infinite initial conditions)
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Example: Bellman-Ford zero initial conditions 
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Routing in the ARPANET

Uses shortest paths from origin to destination.

1969 algorithm:
Node i computes an estimate  of its distance to aDi

given node 0

                  Di =
j�N(i)
min (dij + Dj), i � 0,

     : neighbors of i N(i)
       : obtained by neighbors every 0.62 secDj

       D0 = 0

Originally (1969), lengths = number of packet indij

buffer (i,j)
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Instability problems (original ARPANET)
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After updates, everybody will start sending packets
clockwise, and so on.....

Having a bias independent of flow in the arc
distances helps to prevent this problem
(e.g.  = constant + number of packets in the buffer)dij
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1979 ARPANET Algorithm

 average delay of packets crossing (i,j) in the lastdij =
10 secs. The  are broadcast every 60 secs to alldij ’s
other nodes, using a flooding mechanism.
Nodes update their shortest paths (asynchronously),
using Dijkstra’s algorithm.
Each node keeps track of the first link on the shortest
path.
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Link lengths are broadcast to all other nodes through
flooding algorithm:

� origin sends information to neighbors
� The neighbors send it to their neighbors (except for node

from which they received it)
� Each packet has a SN and a node ID. Using this

information, nodes avoid forwarding a packet twice.

Note: other alternatives include broadcasting over a    
            spanning tree
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                  Dijkstra’s Algorithm

Given: G=(N,A), destination node 1.dij � 0,
Idea: find the shortest paths in order of increasing
path length.

      P1 = {1},D1 = 0,Dj = dj for j � 1
1. Find next closest node. Find such that           i � Pk−1

                                  Di =
j�Pk−1
min Dj

             set     If all nodes covered, stop.Pk = Pk−1 � {i }.

2. Update labels. For all                                            j � Pk

                                       Dj =
i�P k
min {dji + Di}

             Go to 1.
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Example: (Dijkstra’s Algorithm)
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